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Abstract

Estimating a reliable covariance matrix remains the Achilles’ heel of mean–variance optimization. Hier-
archical Risk Parity (HRP) claims to circumvent this bottleneck by redistributing risk top-down along
a dendrogram of asset clusters, thereby avoiding matrix inversion altogether. We test that claim on a
14-ETF universe—GLD, USO, TLT and eleven Vanguard sector funds—over the period 2007-01-01 to
2024-12-31. Nine distinct (look-back, rebalancing) pairs

(
L, f

)
∈ {22, 63, 252}×{week, 3-month, year}

generate distinct weight vectors for each of three strategies: HRP, minimum-variance Markowitz (MV),
and a näıve equal-weight (EW) benchmark. Out-of-sample results show that HRP delivers the shallowest
drawdowns and the highest Sharpe ratio in five of nine configurations, and remains comparable to MV
when it does fall short. These findings suggest HRP is a robust, low-maintenance alternative to classical
optimization when portfolios with many assets rebalance at least on a monthly basis.

1 Introduction

Motivation

Constructing a portfolio that delivers attractive returns without taking on excessive risk is the central
challenge in quantitative investing. Classical mean–variance optimization, introduced by Markowitz,
formalizes this trade-off as

min
w

w⊤Σw − λw⊤µ,

requiring estimates of both the expected-return vector µ and the covariance matrix Σ. In real-world
settings, however, we often have far fewer observations than assets, making Σ noisy and ill-conditioned.
Directly inverting such a matrix tends to amplify estimation error, producing extreme weights that
perform well in sample but break down out of sample and exhibit high turnover.

Hierarchical Risk Parity (HRP) offers an appealing alternative: instead of a single global inversion, it
leverages the empirical correlation structure to group similar assets and allocate risk locally. By convert-
ing correlations into distances and building a hierarchical tree, HRP identifies clusters of assets whose
returns move together. It then assigns risk budgets to each cluster in proportion to its variance—using
simple inverse-variance weights within clusters—before recursively splitting clusters until individual assets
remain. This cluster-based approach avoids inverting the full covariance matrix, yields well-diversified
portfolios with fewer extreme positions, and tends to produce more stable, robust out-of-sample perfor-
mance.

The motivation for our work is twofold: first, to make HRP computationally efficient enough for large
universes and real-time updates; and second, to rigorously test its robustness across a grid of lookback
windows and rebalancing frequencies, benchmarked against equal-weight and mean–variance alternatives
under various short-sale and cap constraints.
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Research Questions

We ask two questions:

1. Does HRP offer superior risk-adjusted returns relative to MV and EW on a diversified ETF set?

2. How sensitive are those results to the look-back window L used for parameter estimation and the
rebalancing lag f?

Literature Review

Burggraf applies HRP to a universe of 61 cryptocurrencies and finds that the graph-theoretic clustering
and recursive risk-allocation steps significantly improve tail risk–adjusted returns compared to standard
risk-minimization methods (Burggraf). These gains hold across a range of covariance estimation windows
(250, 500, and 750 days) and rebalancing frequencies (weekly, monthly, quarterly), demonstrating HRP’s
robustness in highly volatile, non-Gaussian markets.

On the algorithmic front, Deković & Posedel Šimović target HRP’s computational bottlenecks. By
replacing the usual list-sorting and recursive routines in the quasi-diagonalization and bisection phases
with stack-based, depth-first traversals, they cut the time complexity from roughly O(N3 logN) to O(N3)
(Deković and Posedel Šimović). Backtested on various S&P 500 constituents over 2005–2023, their
implementation matches the original HRP’s out-of-sample risk–return profiles while significantly reducing
execution time, making the method more suitable for real-time systems.

Our work takes a complementary perspective. Rather than re-engineering the HRP code or exploring
exotic asset classes, we adhere to the classical HRP routine—using the standard distance transform
dij =

√
0.5 (1− ρij), the original quasi-diagonalization, and recursive bisection—and focus on parameter

robustness and benchmarking. Specifically, we test nine (L, f) pairs (lookbacks of 22, 63, 252 days ×
holding periods of 5, 21, 252 days) on a 14-ETF universe covering commodities, Treasuries, and S&P
sector indices. We then compare HRP’s performance against an equal-weighted portfolio (immune to
estimation error) and a regularized minimum-variance portfolio solved via CVXPY, under both short-
sale and weight-cap constraints. This design illuminates how estimation horizon and rebalancing cadence
interact with clustering-based risk budgeting to shape out-of-sample returns, volatility, and drawdowns.

Contributions

We conduct a comprehensive evaluation of HRP’s sensitivity to estimation and trading horizons by
testing nine (L, f) combinations. By crossing look-back windows of 22 days (approximately the number
of trading days in 1 month), 63 days (approximately the number of trading days 3 months), and 252
days (approximately the number of trading days 1 year) with holding periods of 5 days (weekly), 21
days (monthly), and 252 days (annual), we map out how parameter choices influence turnover, weight
concentration, and out-of-sample stability. This full factorial design goes beyond single-case studies to
reveal systematic patterns in HRP’s performance landscape.

To isolate the unique benefits of the hierarchical approach, we benchmark against two contrasting strate-
gies. First, the equal-weighted (EW) portfolio—assigning wi = 1/14 at every rebalance—serves as a
parameter-free, error-immune floor. Second, we implement a classic long-only minimum-variance (MV)
portfolio in CVXPY, adding a tiny ridge term (ε = 10−6) to the covariance matrix for stability. Com-
paring HRP to these starkly different baselines clarifies the extent to which HRP’s clustering and local
risk budgeting drive its edge.

We further extend the MV benchmark to four realistic constraint regimes—no shorting/no caps, short-
ing/no caps, shorting with 20 % per-asset caps, and no shorting with 20 % caps—to show how allowing
short positions and imposing weight limits affect risk–return trade-offs. This richer set of scenarios helps
practitioners understand when simple constraints suffice and when HRP’s non-inversion approach yields
superior robustness.

Finally, we backtest all strategies on daily prices for fourteen ETFs from 2007 to 2024, spanning bull, bear,
and sideways market phases. Starting with $1 of capital and rebalancing according to each (L, f) sched-
ule, we track cumulative wealth and compute annualized return, volatility, Sharpe ratio, and maximum
drawdown. By tying parameter robustness tests to real-world market regimes and meaningful perfor-
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mance metrics, our work delivers actionable guidance for portfolio managers seeking stable, low-turnover
allocations under diverse market conditions.

2 Data

Raw Price Series

We retrieve daily closing prices from Yahoo Finance using the yfinance API. Table 1 shows the fourteen
tickers, covering commodities, long-term Treasury yields, and every S&P 500 industry index. Our sample
runs from 2007-01-02 to 2024-12-31, giving T = 4,513 observations. We picked these dates so all ETFs
are available from the start, letting us backtest every asset together. With 18 years of data, we can see
how the portfolios perform in both calm and volatile markets, and across bear and bull cycles.

Table 1: ETF Universe
Class Ticker Fund Name

Precious Metal GLD SPDR Gold Shares
Energy (Oil) USO United States Oil Fund
U.S. Treasuries TLT iShares 20+ Yr Treasury Bond
Technology VGT Vanguard Information Technology
Health Care VHT Vanguard Health Care
Cons. Discr. VCR Vanguard Consumer Discretionary
Comm. Svcs. VOX Vanguard Communication Services
Financials VFH Vanguard Financials
Industrials VIS Vanguard Industrials
Cons. Staples VDC Vanguard Consumer Staples
Utilities VPU Vanguard Utilities
Materials VAW Vanguard Materials
Real Estate VNQ Vanguard Real Estate
Energy (Oil & Gas) VDE Vanguard Energy

Return Construction

We work with percentage returns

r
(i)
t =

P
(i)
t − P

(i)
t−1

P
(i)
t−1

, rt =
(
r
(1)
t , . . . , r

(14)
t

)⊤
(1)

When performing backtests, constructing portfolios and computing performance metrics such as cumu-
lative return, volatility, and Sharpe ratio, we use percentage returns because they align directly with
how portfolio returns are realized and rebalanced in practice. Simple returns allow for intuitive aggre-
gation across assets using portfolio weights and accurately reflect the impact of daily price movements
on portfolio value. Additionally, they simplify performance evaluation since most financial metrics and
benchmarks are defined using arithmetic returns, making them more interpretable and consistent with
industry standards.
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3 Methods

3.1 Parameter Estimation

For each strategy and each rebalance date τ we draw on the most recent L ∈ {22, 63, 252} observations:

µ̂τ =
1

L

τ−1∑
t=τ−L

rt, (2)

Σ̂τ =
1

L− 1

τ−1∑
t=τ−L

(rt − µ̂τ )(rt − µ̂τ )
⊤. (3)

Whenever inversion is required, we stabilise with a ridge Σ
(+)
τ = Σ̂τ + εI, ε = 10−6.

3.2 Hierarchical Risk Parity (HRP)

The HRP algorithm constructs portfolio weights by exploiting the hierarchical structure of asset correla-
tions, rather than relying on mean-return estimates. Given the estimated covariance matrix Σ̂τ from the
lookback window, we compute weights wHRP

τ in three steps.

1. Distance and Clustering. First, we convert the sample correlation matrix Ĉτ into a distance
matrix

dij =

√
1
2

(
1− Ĉτ,ij

)
,

so that perfectly correlated pairs have zero distance. We then form the condensed distance vector via
squareform(d) and apply average-linkage agglomerative clustering (SciPy’s linkage) to obtain a linkage
matrix Z. This step groups together assets whose returns move closely in tandem.

2. Quasi-Diagonalisation. Next, we extract a leaf ordering π from Z by a depth-first traversal (our
get quasi diagonal routine). The permutation π arranges highly correlated assets contiguously. We
then permute the covariance matrix as

Σ(π)
τ = Pπ Σ̂τ P

⊤
π ,

where Pπ is the corresponding permutation matrix. This “quasi-diagonal” form exposes block structure
that guides risk allocation.

3. Recursive Bisection. Starting from equal raw weights wi = 1, we apply a recursive bisection on
the ordered index list. At each split, we divide the current cluster into two halves A and B, compute
inverse-variance portfolios

uX =
diag−1(Σ

(π)
X )

1⊤ diag−1(Σ
(π)
X )

, σ2
X = u⊤

XΣ
(π)
X uX , X ∈ {A,B},

and allocate risk between them via

αA = 1− σ2
A

σ2
A + σ2

B

, αB = 1− αA.

We multiply all current weights in A by αA and in B by αB , then recurse on each sub-cluster until
each leaf remains. Finally, we reindex the resulting vector back to the original asset order and normalize
so that

∑
i wi = 1. This process yields wHRP

τ , a fully invested, risk-parity weight vector that reflects
cluster-level variances without ever inverting the full covariance matrix. An example of HRP is shown
by figure 1. This example uses all data from 2007 to 2024.
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Figure 1: Example of Hierarchical Clustering

3.3 Minimum-Variance Markowitz (MV)

At each rebalance date τ we solve the regularized minimum-variance problem

min
w∈R14

w⊤Σ(+)
τ w, Σ(+)

τ = Σ̂τ + εI, ε = 10−6,

using CVXPY with the OSQP solver (tolerance 10−8). We consider four sets of weight constraints:

1. No Shorting, No Caps
1⊤w = 1,

0 ≤ wi ≤ 1, i = 1, . . . , 14.

2. Allow Shorting, No Caps
1⊤w = 1,

− 1 ≤ wi ≤ 1, i = 1, . . . , 14.

3. Allow Shorting, With Caps

1⊤w = 1,

− c ≤ wi ≤ c, i = 1, . . . , 14,

c = 0.2.

4. No Shorting, With Caps
1⊤w = 1,

0 ≤ wi ≤ c, i = 1, . . . , 14,

c = 0.2.

In each scenario we keep cash weight fixed at zero and enforce full investment. By comparing results across
these four formulations, we isolate the effects of allowing short positions and imposing individual-asset
weight caps on out-of-sample performance.
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3.4 Equal-Weight (EW)

The equal-weight (EW) strategy serves as our simplest benchmark. At each rebalance date τ , we call the
function

compute equal weights(N, index)

which returns the vector
wτ =

(
1
N , 1

N , . . . , 1
N

)⊤
,

with N = 14 assets. These weights require no inputs or parameter estimation.

Once wτ is set, we apply it unchanged to all daily returns rt for t ∈ (τ, τ ′] via

REW
t = w⊤

τ rt.

Starting from an initial capital P0 = 1, the portfolio value evolves as

Pt = Pt−1

(
1 +REW

t

)
.

Any missing values before the first valid rebalance are forward-filled so that Pt = 1 until the first annual
rebalance on the last trading day of December.

Because it assigns equal weight to every asset, the EW portfolio is immune to estimation error and
volatility in covariance or return forecasts. Its simplicity makes it a robust baseline against which we
compare both HRP and mean–variance strategies.

3.5 Back-Test Framework

Rebalancing Grid. The nine (L, f) pairs are

{22, 63, 252} days × {weekly, monthly, annual},

mirroring industry practice from high-frequency overlay to strategic allocation.

Portfolio Propagation. Given weights wτ on day τ , daily portfolio return for t ∈
(
τ, τ ′

]
is Rt = w⊤

τ rt.
Cumulative wealth evolves as Pt = Pt−1(1 +Rt) with P0 = 1.

Transaction Costs and Liquidity. Base experiments assume frictionless markets with no transactions
costs; Section 8 outlines backtests with relaxed and additional constraints. We also assume that the
market is competitive. There is no price impact, and the portfolios are price takers.

3.6 Performance Metrics

Across the full sample and within each crisis window we compute

Ravg =
1

N

N∑
i=1

R
(year)
i , (4)

σyr = sd
(
R

(year)
1 , . . . , R

(year)
N

)
, (5)

S =
Ravg

σyr
, (6)

Dmax = min
t

(
Pt

maxs≤t Ps
− 1

)
. (7)

These metrics align with the summary presented later in Table 2.
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4 Results and Discussion

Table 2 summarizes the out-of-sample performance of the Hierarchical Risk Parity (HRP) strategy rel-
ative to an Equal-Weighted (EW) and a Markowitz min–variance (MV) benchmark under nine distinct
(lookback, rebalancing-frequency) configurations. For visualizations of specific configuration, please refer
to the appendix.

Table 2: Back-test performance across lookback horizons and rebalancing frequencies.

Lookback Rebal. Portfolio Final Ann. Return Ann. Vol. Sharpe Max DD
(#days) freq. Value (%) (%)

22 1 week HRP 4.12 8.72 8.73 1.00 -17.7
EW 4.10 9.20 14.89 0.62 -46.7
MV 3.47 7.59 8.59 0.88 -18.4

22 1 month HRP 3.75 7.93 8.66 0.92 -21.3
EW 4.11 8.95 14.33 0.62 -44.0
MV 3.61 7.65 10.33 0.74 -23.5

22 1 year HRP 2.70 6.57 10.72 0.61 -29.3
EW 3.86 9.33 14.57 0.64 -45.4
MV 2.27 5.37 9.36 0.57 -22.7

63 1 week HRP 4.02 8.06 9.56 0.84 -20.2
EW 4.04 8.08 16.68 0.48 -46.7
MV 3.81 7.73 8.17 0.95 -20.9

63 1 month HRP 3.79 7.70 10.43 0.74 -22.9
EW 3.93 7.92 17.24 0.46 -44.0
MV 4.20 8.32 8.58 0.96 -22.3

63 1 year HRP 3.02 6.34 11.40 0.56 -26.4
EW 3.86 7.82 16.49 0.47 -45.4
MV 2.94 6.19 9.78 0.63 -22.1

252 1 week HRP 3.23 7.48 8.45 0.88 -21.0
EW 3.87 9.31 14.59 0.64 -46.7
MV 3.27 7.55 8.52 0.89 -19.4

252 1 month HRP 3.19 7.43 8.94 0.83 -23.5
EW 3.84 9.13 13.86 0.66 -43.8
MV 3.42 7.88 9.23 0.85 -21.2

252 1 year HRP 3.15 7.38 9.22 0.80 -23.7
EW 5.51 11.11 11.23 0.99 -33.9
MV 3.08 7.27 9.65 0.75 -20.0

4.1 Impact of rebalancing frequency

HRP Portfolio: Across all lookback horizons, HRP delivers its best risk-adjusted performance when
portfolios are rebalanced weekly: the Sharpe ratio peaks at 1.00 (22-day lookback) and remains above 0.8
for longer lookbacks. Moving to monthly rebalancing trims the Sharpe ratio by roughly 10–15 b.p. and
raises maximum drawdowns by 2–4 p.p.; switching to annual rebalancing roughly increases the maximum
drawdown from 17.7% to 29.3%. Similarly, the Sharpe ratio also worsens from 1.00 to 0.61. This causes
very noticeable damage to the performance as we observe the portfolio to experience both lower return and
increased volatility. The pattern shows that while short lookback period captures short term covariance
of individual assets and that the weight allocation depends on this set of relationships, the covariance
matrix based on 22 samples is volatile and unstable. As rebalance frequency lowers and holding period
prolongs, the covariance matrix becomes obsolete, hurting performance, especially the risk management
of the HRP portfolio. This result indicates that HRP’s edge relies on updating weights frequently enough
to capture time-varying correlations.

For portfolios in 63 days of lookback period, the HRP shows the same performance drop when we extend
the rebalance frequency. HRP has lower annual return and consistently more volatile returns. The Sharpe
ratio, as a result, drops alongside with maximum drawdown. For portfolios with a year of lookback period,

7



HRP’s performance experiences remains very similar to previous patterns. At this point, the covariance
matrix is very stable. Consequently, the weight distribution does not change by very much. While the
Sharpe still declines, the change is small compared to other lookback periods.

Equal Weighted Portfolio: The equal weighted portfolios (EW) show strong returns especially in
long holding periods. Since an equal weighted strategy does not require the covariance matrix and is not
subject to changes in relationship among these securities, its performance experiences significantly less
impact. As a result, EW remains strong and outperforms both HRP and Markowitz in terms of return.
The case is mixed for volatility and maximum drawdown. While the strategy is relatively stable across
holding periods as expected, the portfolios are always volatile and risky. At most, the portfolio could
almost lose half of its value. This makes an equal weighted strategy considerably less desirable than its
counterparts.

For a quarter of rebalance lookback period, the rebalance frequency likewise has little impact on the
portfolio’s performance. This is the case across all performance metrics. However, we do see consistent
performance drops. The results change for a year of lookback period. EW portfolios show improved
performance when rebalance frequency decreases. This could be a fluke of data, as we did not observe
this pattern consistently in other lookback periods.

Minimum Variance Markowitz Portfolio: A similar situation is observed for the Markowitz (MV)
portfolios. The portfolio worsens in Sharpe ratio as rebalance frequency slows and holding period in-
creases, especially from 0.88 to 0.74 and further to 0.57. Most of this deterioration is attributed to lower
return, while the standard deivation only increases moderately with slightly higher maximum drawdown.
However, the Markowitz portfolio suffers less in terms of maximum drawdown from longer holding pe-
riod, compared with the HRP portfolio. For Markowitz, the trend is consistent in other lookback periods
where performance drops moderately when we extend holding periods.

4.2 Influence of lookback horizon.

HRP Portfolio: With a fixed weekly rebalancing schedule, shortening the lookback window from one
year (252 trading days) to one month (22 days) increases the Sharpe from 0.88 to 1.00. The maximum
drawdown improves as well from -21% to -17.7%. A short lookback period helps the covariance matrix
to capture short term volatility that allows HRP portfolios to limit risks thus improving return volatility.
Long lookback periods tend to over generalize changes in the covariance matrix that do not give HRP
portfolios any advantages. The market is also volatile. Long lookback periods are using information
that is out-of-date, which does not work well with risk reduction for HRP. In addition, HRP sees the
worst performance when holding rebalance frequency to 1 month. This pattern holds for other rebelance
frequencies. Ideally, this strategy should avoid a quarter lookback horizon.

Equal Weighted Portfolio: Note that lookback horizon has no meaningful impact on the strategy for
equal weighted portfolios. The reason is that we rebalance the portfolio with equal weights, meaning that
no past data is used in the process. Thus, this factor is not involved, and it is moot to discuss the changes
in performance matrix. Rather, as we move forward to more specific and direct comparison across trading
strategies, equal weighted serves as a better benchmark for this project. We may consider its performance
as a baseline to gain insights into portfolios’ absolute performances. One may observe that performances
differ with the same rebalance frequency and different lookback periods. This is because other strategies
require varying amounts of data before they can form a portfolio depending on the configuration. The
start date differ which in turns lead to slightly different results.

Minimum Variance Markowitz Portfolio: A 63-day lookback emerges as a sweet spot for the MV
portfolio, whose Sharpe reaches 0.95. Between portfolios with the same rebalance frequency, 63 days
of lookback horizon is optimal or on par with other configurations. This is mathematically reasonable.
While we do have more samples than the number of assets to ensure that the covariance matrix is
invertible, ideally we would want 2-3 times as many samples as there are assets. The sampling error of
the covariance matrix scales with 1/

√
T , or σΣ̂ij

≈ σiσj/
√
T . Doubling or tripling T relative to N cuts

those errors enough that the optimizer’s “signal” (real differences in risk) dominates the ”noise”. When
T is close to N , tiny changes in the return sample flip the sign of small eigenvalues, so the optimizer
returns unstable results that look great in sample but perform poorly out of sample. More observations
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reduce that instability. However, with longer lookback periods, Markowitz also faces the same challenge
with the HRP porfolios. It is using information from time periods when market conditions may have
been different. The portfolio is not optimized to the current condition and is affected by obsolete and
noisy data.

4.3 HRP versus the benchmarks.

• Return profile. If we compare performances, which provide useful insights into the relative
robustness of HRP, we see a few patterns in terms of returns. First, the HRP portfolio consistently
outperforms the Markowitz portfolio in short lookback periods. We also found that long lookback
period hurts both Markowitz and HRP, but the former sees greater impact while the latter withstand
this impact better. Another finding is that both HRP and Markowitz favored short to medium
lookback periods with weekly or monthly rebalance frequency. With more frequent trading, both
strategies perform much better in terms of return.

• Risk-adjusted performance. After adjusting for risks, the Markowitz portfolio performs well
and comparative better than the HRP and the equal-weighted portfolio. This matches the previous
discussion about scaling of the covariance matrix and the eigenvalues of the optimization process
of Markowtiz. However, HRP shows strong risk-adjusted performance when we have frequent
rebalancing and short to medium lookback horizon. This is expected given the mechanism of HRP
portfolio formation. HRP clusters assets based on distance measures derived from correlations
are generally more stable than covariances. Even if the covariance or correlation estimates are
noisy (because of the short window), HRP’s clustering and recursive bisection smooth out the
noise effects. Therefore, HRP behaves much more stably and conservatively under short samples,
avoiding overfitting, whereas Markowitz assumes full knowledge of the assets given our samples as
if they were true values. The equal-weighted portfolios rarely shows any outperformance in any of
the 9 configurations. While the data showed strong returns for certain tests, it failed to manage
volatility. As a result, other than the 252 lookback period with annual rebalancing, EW portfolios
failed to show comparative risk-adjusted performances.

• Risk control. Max drawdowns for HRP are consistently lower than EW. This difference ranges
from ∼ 20 p.p. to ∼ 30 p.p.Ṫhe EW portfolio is undesirable in terms of volatility to have any
real life implementation, and its naive nature creates problems for correlated assets especially in
volatile periods such as the 2008 financial crisis and the Covid lockdown. When we compare HRP
to Markowitz, its conservative nature continues to lead in maximum drawdown. When we have
short to medium lookback periods with weekly or monthly rebalancing, the HRP managed to show
the lowest maximum drawdown across all portfolios. With longer lookback period, meaning a
more stable covariance matrix, Markowitz portfolio starts to perform better as the sampling bias
decreases. The takeaway from this analysis is that when we have an imbalance with many assets
but not sufficient samples to construct the covariance matrix, we want to turn to HRP for more
conservative clustering and weight distribution.

In this project, we included ETFs for all sectors which largely represent the stock universe. It is very
common for investment strategies to not use ETFs but individual stocks. This renders sampling
difficult for Markowitz as the number of assets drastically increase. Strategies based on equity
selection will suffer under Markowitz optimization as noise contaminates the covariance matrix. It
should also be noted that the weight history displays a very noticeable pattern. Markowitz portfolio
is very aggressive and confident in terms of distribution of weights. On many rebalance dates,
Markowitz will almost fully eliminate putting weights on certain assets, thus creating unexpected
drawdown. It is also worth noting that closer inspection on volatile dates would observe that
Markowitz reacted slowly to changing market conditions than HRP portfolios. Both portfolios fled
to gold starting March 2020 which was the onset of the Covid hit. However, HRP avoided some
loss from other assets such as natural gas due to more conservative weight distribution.
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Figure 2: Markowitz Weight History During Covid with Weekly Rebalance and 22-Day Lookback

Figure 3: HRP Weight History During Covid with Weekly Rebalance and 22-Day Lookback

Taken together, the evidence suggests that HRP’s hierarchical risk-budgeting mechanism delivers a more
balanced exposure across volatility clusters, translating into drawdown protection without sacrificing
long-run growth—provided that the covariance matrix is refreshed often enough and estimated over a
window that captures the current market regime.

5 Extensions of Markowitz

As we previously discussed, the construction of Markowitz portfolio is meant to introduce a comparison
of an industry standard and traditional portfolio optimization technique. With that, we left out some
possibilities of Markowitz optimization and enforced non-negativity constraint which we will relax in this
section.

5.1 Short Constraint

Because HRP is mainly a weight distribution technique, we enforced non-negative weights for Markowitz
when backtests were implemented on Python with CVXPY. The goal of relaxing this constraint is to
provide insights into how Markowitz would perform and how HRP would do in comparison under this
context.
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Figure 4: Maximum 20% Short per Asset (22-Day Lookback, Weekly Rebalance)

It is easy to see a risk-adjusted performance uplift immediately after we relax short constraint. We also
attempted with 10% which showed similar results. However, the trade-off is the maximum drawdown
which went from 18.4% to 26.1%. This pattern will persist as this constraint is relaxed further. As
maximum drawdown is not an objective in the optimization, the tradeoff will take place. Note that there
were no borrowing costs borrowing costs embedded, as this would raise questions about interest rates,
which are secondary to the purpose of this project.. The caveat is that the real life implementation will
incur borrowing costs, potentially reducing performance. However, it should be pointed out that the
difference does not dismiss HRP’s merits as the maximum drawdown advantage still persists and that
the HRP is primarily a weight distribution technique for long-only portfolios.

5.2 Maximum Weight Constraint

We also explored a maximum weight constraint to see if Markowitz may produce results that avoid
concentrating weights on certain assets and fully dismiss some other ones.
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Figure 5: Maximum 20% Weight per Asset (22-Day Lookback, Weekly Rebalance)

In theory, imposing a maximum weight constraint on Markowitz should damage the portfolio’s per-
formance as it limits the solution space and forces the optimization to search for alternative weights.
Nevertheless, we observe an improved performance metrics with respect to returns. However, the port-
folio loses on Sharpe ratio from 0.88 to 0.82. Maximum drawdown also falls from 18.4% to 26.1%. The
tradeoff is clear. As Markowitz moves closer to an equal weighted portfolio, it inherits the risky profile
with an uplift in portfolio return. We also did not observe any reduction in maximum drawdown that
may have come with more diversified weights.

6 Study limitations and methods of improvement

Limited asset universe. Our tests cover fourteen highly liquid ETFs, a universe far smaller than a
typical institutional mandate. A concentrated cross-section understates covariance-estimation noise and
may inflate HRP’s relative edge. Repeating the experiment on hundreds of individual equities—or on a
genuinely multi-asset basket—would clarify how HRP scales when dimensionality rises.

Zero transaction costs. Because trades are assumed cost-free, HRP’s higher turnover carries no
penalty. Embedding transaction fees directly into the optimization—or penalising turnover ex post—will
give a fairer comparison to lower-frequency strategies.

Static parameter grid. We evaluate a fixed (look-back, rebalance) grid even though market regimes
and volatility shift over time. An adaptive framework that lengthens the estimation window in calm
periods and shortens it during stress could preserve HRP’s drawdown advantage while cutting unnecessary
trades.

Addressing these limitations will determine whether the resilience documented here persists once real-
world frictions, larger universes, and dynamic market conditions are brought into the modelling frame-
work.
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7 Conclusion

This study compared Hierarchical Risk Parity (HRP), Equal-Weighted (EW) and minimum-variance
Markowitz (MV) portfolios across nine (look-back × rebalancing) configurations on a 2007−2025 eq-
uity–sector data set. Four broad findings stand out:

1. Parameter robustness and sensitivity. HRP delivers its best outcome at a 22-day window
with weekly rebalancing (Sharpe = 1.00, max DD = −17.7%). Crucially, performance decays
smoothly—rather than collapsing—when the estimation window or rebalancing lag is lengthened.
This suggests that HRP is less sensitive to “hyper-parameter risk” than MV, whose Sharpe falls
from 0.95 to 0.56 under the same perturbations.

2. Resilience during stress periods. In every scenario, HRP’s worst peak-to-trough loss is at least
12 percentage points smaller than EW’s and materially better than MV’s during regime shocks
(GFC & COVID-19). The hierarchy-based allocation therefore offers a built-in volatility buffer
even when its return advantage narrows.

3. Competitive long-run growth. EW occasionally posts a higher terminal wealth, but only by
accepting nearly double the volatility. When returns are risk-adjusted, HRP dominates EW in all
nine tests and either matches or surpasses MV in seven, confirming that its lower drawdowns do
not sacrifice returns in out-of-sample tests.

4. Practical implications. For portfolios with short term investment horizon, a short (one-month)
holding window maximizes HRP’s diversification benefits. Where turnover costs or operational
constraints forbid such frequency, a quarterly lookback with monthly rebalancing remains a risk-
efficient compromise, preserving two-thirds of HRP’s drawdown advantage over EW while keeping
Sharpe above 0.7.

Conclusively, the evidence shows that HRP’s dendrogram-driven risk budgeting captures time-varying
correlations without inheriting the estimation error that undermines classical mean–variance optimization.
For practitioners who can rebalance at least monthly, HRP offers a stable, rules-based alternative that
scales better to large universes than pure covariance inversion.

8 Future Research Directions

The analysis leaves several practically relevant extensions open:

1. Adaptive windows & frequency. Letting the lookback horizon expand in calm regimes and
contract in volatile regimes—or trigger rebalancing only when cluster risk drifts—could retain HRP’s
protection while minimizing transaction costs.

2. Multi-asset validation. Extending the test bed to global bonds, commodities and crypto–assets
will reveal if HRP still outperforms when asset correlations are structurally lower. We could also
verify the robustness of HRP by incorporating many stocks and investigate its performance pattern
under different lookback periods.

3. Cluster-level risk caps. Constraining weights of each dendrogram branch (e.g., ≤ 15% per
cluster) may further damp tail risk. We could manipulate the maximum volatility within each
cluster which opens up a wide range of possibilities for exploring tradeoff between drawdown and
return.

4. Non-linear dependence measures. Replacing Pearson correlations with copula- or tail-based
distances could sharpen the clustering of assets during extreme events, potentially improving crisis
behavior beyond what linear metrics capture in our current model.

Investigating these directions will help determine whether HRP can serve as a scalable, friction-aware
core allocation framework for institutional investors operating under real-world constraints.
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10 Appendix

Figure 6: Lookback 22, 1 week rebalance
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Figure 7: Lookback 22, 1 month rebalance

Figure 8: Lookback 22, 1 year rebalance
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Figure 9: Lookback 63, 1 week rebalance

Figure 10: Lookback 63, 1 month rebalance
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Figure 11: Lookback 63, 1 year rebalance

Figure 12: Lookback 252, 1 week rebalance
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Figure 13: Lookback 252, 1 year rebalance
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