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Abstract

The accuracy-interpretability trade-off is always acute in the financial modeling, where low-
SNR and non-stationarity challenge both black-box and glass-box models. Traditional macro
forecasting often relies on established models that prioritize transparency. However, recent ad-
vancements in artificial intelligence, particularly through Explainable Boosted Machines, have
begun to address this challenge. The goal of this project is to develop forecasting and trading
frameworks for returns of global equity and bond indices using 126 FRED macroeconomic fea-
tures, integrating a transparent regression model with Explainable Boosting Machine (EBM)
and Light Gradient Boosting Machine (LightGBM) to reconcile the interpretability with the pre-
dictive accuracy and to address the opacity inherent in AI-driven forecasting. Specifically, this
project firstly fits an OLS model via a multi-criteria feature selection mechanism to capture price-
related linear relationships; then trains EBM and LightGBM on the post-OLS residuals with
non-price-derived features to learn interactions and nonlinear relationships; finally combined
these models’ complementary predictions to enhance model interpretability while harnessing
the full power of machine learning.
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1 Introduction

Macroeconomic investors increasingly rely on large panels of economic indicators and financial con-
ditions to form expectations about the joint dynamics of global equity and bond returns. Recent
regime shifts in inflation, monetary policy, and stock–bond co-movements have underscored the need
for systematic forecasting tools that can translate high dimensional macro data into actionable trad-
ing signals. At the same time, the growing use of machine learning in asset management has raised
concerns about model opacity, which can hinder risk management, communication with stake-
holders, and regulatory acceptance. This tension between predictive accuracy and interpretability
motivates the present study.

In this project, we design a macroeconomic forecasting and trading framework that aims to move
macro investing from a purely black-box AI predictive modeling toward a transparent crystal-box
implementation. Building on point in time data from the FRED MD database, we construct 126
transformed monthly indicators that span output, labor, housing, consumption, money and credit,
interest and exchange rates, prices, and equity markets. The forecasting targets are monthly returns
on the MSCI All Country World Index as a representative global equity portfolio and on the World
Government Bond Index as a representative global sovereign bond portfolio over the period 1982
to 2024. This setting allows us to study how macro conditions map into broad asset class returns
that are central to diversified portfolios.

Methodologically, we combine traditional regression techniques with advanced boosting machine
models. As a benchmark, we estimate an ordinary least squares model that links each asset class
return to a carefully selected subset of macro features obtained through multi-criteria ranking-
based feature selection. We then build two augmented models that use the residuals from the OLS
benchmark as targets for Explainable Boosting Machines and Light Gradient Boosting Machines,
respectively. In both augmented models, the final forecast is the sum of the OLS prediction and
the machine learning residual prediction, which preserves a clear economic baseline while allowing
flexible nonlinear corrections. We evaluate these models using an 80 to 20 split between a training
and validation sample from 1992 to early 2018 and an out of sample test period from 2018 to 2024
under both one month and two month lags between macro features and returns in order to address
look-ahead bias in data releases.

Our empirical results show that integrating OLS with LightGBM can modestly improve out
of sample fit and hit rates for both equity and bond returns at a one month lag, while backtests
indicate that all machine learning augmented models produce higher Sharpe ratios and shorter
drawdowns than a simple benchmark that invests directly in the target indices. At the same time,
the OLS plus EBM specification delivers richer economic interpretability through global and local
feature importance curves, which highlight the role of monetary policy indicators, consumption
and housing activity, and selected labor and credit variables for both asset classes. When the lag
between macro features and returns is extended to two months, apparent predictive content declines
sharply, which illustrates the practical trade off between information timeliness and the avoidance
of look-ahead bias.

The main contributions of this study are threefold. First, we provide a unified framework
that reconciles transparent regression based macro models with flexible machine learning residual
models, thereby offering investors a continuous spectrum between human readable and algorithmic
forecasts. Second, we document how different macro features drive equity and bond return forecasts
within this framework and relate these findings to existing evidence on macroeconomic drivers of
stock–bond correlations and on machine learning applications in asset pricing and credit risk. Third,
we translate statistical forecasts into simple systematic trading strategies that use the federal funds
rate as the risk free benchmark and show that crystal box macro signals can enhance portfolio
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performance relative to passive exposure while retaining interpretability.

2 Literature Review

Recent work in financial engineering shows how machine learning methods and macroeconomic
information can improve prediction of asset returns, credit events, and cross asset comovements.
The following review focuses on three contributions that are directly related to this study.

2.1 Equity Return Prediction with LightGBM

Yang applies Light Gradient Boosting Machine to excess return prediction for Chinese A share
stocks and compares it with cross sectional OLS regression (Yang). Using fifty firm level charac-
teristics constructed from Wind and CSMAR data and a rolling out of sample design, the study
reports a monthly out of sample R2 of 2.13% for LightGBM versus 0.95% for OLS and shows that
LightGBM based long only and long short portfolios achieve higher returns and smaller drawdowns
than both OLS strategies and the CSI 300 index. Feature importance analysis indicates that liquid-
ity and volatility characteristics such as abnormal turnover, trading volume, market capitalization,
maximum daily return, and short horizon price deviation dominate the predictive structure, which
underscores the central role of market microstructure in Chinese equity pricing (Yang).

2.2 Explainable Machine Learning for Credit Default Risk

Ma and coauthors develop credit default prediction models for Chinese listed real estate firms using
annual financial ratios, MD&A text, stock bar investor comments, and distance to default from 2017
to 2021 (Ma et al.). They compare glass box models such as logistic regression and the Explainable
Boosting Machine with black box models including random forest, support vector machine, and
AdaBoost, and evaluate performance with accuracy, AUC, KS, and error rates. Across feature
combinations, the Explainable Boosting Machine and AdaBoost achieve the strongest predictive
accuracy, while SHAP, partial dependence, and individual conditional expectation plots reveal how
MD&A tone, investor sentiment, and composite financial components jointly shape default risk,
which highlights the value of explainable machine learning for high stakes credit screening in the
Chinese real estate sector (Ma et al.).

2.3 Macroeconomic Drivers of the Stock–Bond Correlation

Baumann, Nazemi, and Fabozzi investigate the time varying correlation between stock and bond
returns and its macroeconomic drivers using a machine learning approach (Baumann, Nazemi,
and Fabozzi). Drawing on long horizon return series from the Stocks, Bonds, Bills, and Infla-
tion database and a wide set of macro indicators from FRED, they document large shifts in the
stock bond correlation, including during the recent episode of high inflation and rapid monetary
tightening, and then use high dimensional macro panels and variable selection to identify variables
that are most informative for predicting the correlation. The analysis emphasizes the influence of
inflation, real activity, monetary conditions, housing, and related macro factors on the correlation
and provides a ranked list of drivers that can inform portfolio construction when the traditional
negative stock bond relationship becomes unstable (Baumann, Nazemi, and Fabozzi).
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2.4 Research Implications

Together these studies demonstrate that tree based ensemble methods and related machine learning
tools can deliver economically meaningful gains in predictive accuracy for equity returns, credit
default events, and cross asset correlations, especially when combined with rich firm level and
macroeconomic information. They also show that interpretability through feature importance and
explainable artificial intelligence techniques is increasingly essential for applying such models in
practice, which motivates the modeling choices adopted in the present study.

3 Data

3.1 Asset return targets

The empirical analysis uses two global asset class indices as forecasting targets. The equity target
is the MSCI All Country World Index which covers large and mid capitalisation stocks across
23 developed markets and 24 emerging markets and captures about 85% of the investable global
equity universe. The index is country weighted with the United States holding the largest share so
that the same United States mega cap names dominate both MSCI ACWI and the S&P 500 and
the two indices display highly correlated performance. The bond target is the World Government
Bond Index which consists of fixed rate government bonds issued by developed markets in a market
value weighted composition and again has the United States as the largest single country weight.
Monthly total returns on these two indices from 1982 to 2024 form the dependent variables in the
forecasting exercises.

3.2 Macroeconomic features

The explanatory variables are monthly macroeconomic indicators from the FRED MD database
which serve as the covariate matrix X. The panel spans 1992 to 2024 and includes a broad set
of series organised into eight groups that capture output and income labour market conditions
consumption orders and inventories money and credit interest and exchange rates prices and stock
market indicators. The indicators are constructed by United States statistical agencies and many
series are seasonally adjusted at the source. This design provides a high dimensional yet structured
macroeconomic information set that can be aligned with the monthly asset returns. In this project
we use the December 2024 vintage, which provides 126 monthly macroeconomic indicators spanning
eight categories (See Appendix for detailed features and descriptions):

• Output and Income (17 features): Industrial production indices, capacity utilization, and
GDP components

• Labor Market (32 features): Employment levels, unemployment rates, average hours worked,
and jobless claims

• Housing (10 features): Housing starts, building permits, and home sales

• Consumption and Orders (14 features): Retail sales, manufacturing orders, and invento-
ries

• Money and Credit (14 features): Monetary aggregates, consumer credit, and loan volumes

• Interest Rates and Spreads (22 features): Treasury yields, corporate bond spreads, and
the Fed funds rate
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• Prices (21 features): Consumer and producer price indices, commodity prices, and inflation
measures

• Stock Market (6 features): S&P 500 index, dividend yield, and price-earnings ratio

3.3 Transformations to stationarity

Many macroeconomic series appear in non stationary levels which can lead to misleading fits and
unstable forecasts. Following the standard FRED MD convention each raw series xt is transformed
into a stationary series yt using a transformation code Tcode ∈ {1, . . . , 7}. The transformations
stabilise both level and variance and are defined as follows for monthly data

• Tcode 1, no transformation
yt = xt

• Tcode 2, first difference
yt = xt − xt−1

• Tcode 3, second difference

yt = (xt − xt−1)− (xt−1 − xt−2) = ∆2xt

• Tcode 4, logarithm
yt = log xt

• Tcode 5, first difference of logarithm

yt = log xt − log xt−1 = ∆ log xt

• Tcode 6, second difference of logarithm

yt = (log xt − log xt−1)− (log xt−1 − log xt−2) = ∆2 log xt

• Tcode 7, growth rate in percent form

yt =
xt
xt−1

− 1

These transformations produce approximately stationary versions of the macroeconomic indi-
cators which are then used as inputs in the subsequent forecasting models. Detail instruction on
the application of transformations to each macroeconomic variable can be seen in Appendix.

3.4 Further Processing

Step 1. Missing Value Processing
After processing transformation to each feature based on its corresponding Tcode to make the
feature values more stationary, for some features with constructional missing value (due to quarterly
reporting), simply forward fill the raw features data to deal with missing data before transformation.
For some features with missing value at the start and the end of the timeline, just ignore them
before transformation, further in alignment stage, it will be handled.

Step 2. Return Calculation and Alignment with features
We calculate equity monthly return (Y1) and bond monthly return (Y2) from the daily price data,
then align the transformed feature values (X) with the monthly returns with the out-of-sample
logic:
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• 1-Month Lag: for example, feature value (X) reported on the first natural day of March is
aligned with the return (Y) calculated as the changing rate between the price on the first
business day of March and the price on the first business day of April.

• 2-Month Lag: for example, feature value (X) reported on the first natural day of March is
aligned with the return (Y) calculated as the changing rate between the price on the first
business day of April and the price on the first business day of May.

Step 3. Extreme data exclusion
The three months that highly affected by COVID are removed, from February 2020 to April 2020,
to make the evaluations of fitted models more commonly robust.

4 Models

4.1 Framework Overview

Step 1. Return modeling – traditional OLS:

• Use the training dataset to fit OLS model on equity returns and bond returns (y) by the pool of
126 FRED features , but not all 126 features will be actually selected into the model fitting,
only about 15 features (the number is variable based on the choice) will be selected from
the pool of 126 features, through sophisticated multi-criteria feature selection by applying
Rankings and Unions (which will be discussed below), these selected features are denoted as
denote as Xall,selected, and denote the fitted model as fOLS (Model A).

• Then for each month t in the training dataset, apply the fitted OLS model fOLS back to the
training dataset to output:

– linear prediction: ̂yOLS
t = fOLS(Xall,selected

t )

– residual: et = yt − ŷOLS
t

• Within the whole training range, get a time series of et, called
−−−→etrain

Step 2. Residual modeling (boosting machines focus on macro non-linearity):

• Train EBM and LightGBM on residuals (not on y), using macro-only FRED features
Xmacro−only:

– 116 macro-only FRED features: 126 features exclude 10 price-like features: S&P 500,
S&P div yield, S&P PE ratio, VIXCLSx, TWEXAFEGSMTHx, EXSZUSx, EXJPUSx,
EXUSUKx, EXCAUSx, OILPRICEx

– Because after Model A has captured the linear component of returns using all fea-
tures (including price-like ones), Residual models should focus on searching for non-
linear macro structure in the leftover signal. Feeding price-like variables again would
re-introduce the strongest market signals, drown out macro effects, and cover the con-
tributions of other features.

• Model B (OLS + EBM-residual):
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Use the training dataset to fit EBM model on −−−→etrain by Xmacro−only
train , denote the fitted

model as gEBM

• Model C (OLS + LightGBM-resid):

Use the training dataset to fit LightGBM model on −−−→etrain by Xmacro−only
train , denote the

fitted model as gLGBM

Step 3. Combine predictions for residual modeling:

• For each month m in the test dataset, apply the fOLS , gEBM , gLGBM to output:

– ŷAm = fOLS(Xall,selected
m )

– êEBM
m = gEBM (Xmacro−only

m )

– ŷBm = ŷAm + êEBM
m

– êLGBM
m = gLGBM (Xmacro−only

m )

– ŷCm = ŷAm + êLGBM
m

Step 4. Return modeling – boosting machines:

• Model D: Use the training dataset to fit EBM model directly on equity returns and bond
returns (y) by all 126 features (X126), denote as fEBM

• Model E: Use the training dataset to fit LightGBM model directly on equity returns and
bond returns (y) by all 126 features, denote as fLGBM

• For each month m in the test dataset, apply the fEBM , fLGBM to output:

– ŷDm = fEBM (X126
m )

– ŷEm = fLGBM (X126
m )

We will compare the five models through Performance matrices, Confusion matrices, and back-
testing results in the Section 5. Also, there exist some notes of the above four steps:

• All fitting/tuning happens on training/validation only; models are frozen before scoring the
test set to avoid any test leakage.

• We have three sets of X:

– Xall,selected contains around 15 features by Rankings and Unions from the pool of 126
features, used for model A

– Xmacro−only contains 116 macro-only features, used for Model B, Model C

– X126 contains all 126 features, used for Model D, Model E

• On test dataset, we predict residuals only via the trained models; we do not recompute “actual
residuals” using y on test dataset.
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4.2 Train-Test Splits

To ensure the comparability across all models in the project, including these 3 separate models, we
apply a common train-test split structure, where the train dataset (including cross-validation) will
take 80% of the whole time series of data, from March 1992 to February 2018. And the other 20%
time series of data will be the test dataset with a fixed range from April 2018 to November 2024,
there exists a one month gap between train and test dataset to avoid data leakage. The train-test
split is same across all models in this project, but within the training range, the specific train-cross
validation split will be different based on each model’s different parameter tuning mechanism.

4.3 Traditional Regression Model

4.3.1 Feature Analysis

Feature analysis by one-to-one 5-year rolling OLS
For each transformed feature (x) in the pool of 126 FRED features, fit one-x-to-one-y OLS regression
with the equity monthly return (y1) and bond monthly return (y2) separately. Specifically, we split
the timeline using rolling window (window size = 5 years, rolling step = 1 year), then only use the
data within each 5-year window to make OLS regression analysis for each feature separately. We
care about three criteria rankings of each feature by the OLS analysis. Specifically:

Rank 1. OLS Beta Sign Stability:
Record the sign of beta of each feature in each time window’s regression, rank features by each
feature’s sign stability of beta over time (across rolling window blocks), where:

sign stability = 1− (# of sign flips across adjacent blocks)

(# of effective adjacent blcok pairs)

Ignore pairs where any sign is 0 or NA.

Rank 2. OLS R² Stability:
Record the R² of each feature in each time window’s regression, compute each feature’s median(R²)
and CV(R²) = std(R²) / mean(R²) across all time blocks. Firstly, set a boundary of median(R²)
to split all features into two parts, then separately rank features within each part by the feature’s
CV(R²) , since we don’t want to give the feature with too small median R² a high ranking even if
it has lower CV.

Rank 3. Full Timeline OLS R² Value:
Use the whole timeline dataset (no split of time line) to train OLS regression for each feature to
get the sign of beta and R² of each feature, then, rank features by each feature’s full-sample R²
value.

Feature analysis by global yearly Lasso
Use all 126 transformed features to do global yearly Lasso (L1) regression (global means not one-to-
one like above OLS analysis). For each Lasso, only Top 30 features will be selected into the model,
which means instead of applying GridSearchCV to pick best alpha then decide a yearly-variable
selected number, we fix the selected number as 30 across all yearly Lasso models (then automatically
adjust penalty alpha based on the fixed 30 selected number) to keep the comparability in below
rankings. We care about four criteria rankings of each feature by the Lasso analysis. Specifically:

Rank 4. Lasso Selection Rate:
Rank the selection rate of each feature as the proportion of years in which each feature is selected
across all yearly Lasso models
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Rank 5. Lasso Beta Sign Stability:
Record the sign of beta of each feature only within the years when this feature is selected, skip the
years when this feature is not selected, rank the sign stability of beta of each feature over time,
where

sign stability = 1− (# of sign flips across adjacent years when this feature is selected)

(# of effective selected years′ adjacent pairs)

Rank 6. Lasso ∆R2 Stability:
Define ∆R2 of each feature as “drop-one-feature R² changing of the Lasso model”. Apply drop-one
only to features selected by Lasso in that year (for other features, set their ∆R2 = 0 for that year).
Thus, each feature has a sequence of∆R2 values across years (containing both zeros and non-zero
values, and zeros must also be considered). With these 126 sequences, compute median(∆R2) and
CV(∆R2) = std(∆R2) / mean(∆R2) of each feature from its sequence. Then firstly set a boundary
of median(∆R2) to split all features into two parts, then separately rank features within each part
by the feature’s CV(∆R2) , to avoid giving the feature with too small median ∆R2 a high ranking
even if it has lower CV.

Rank 7. Full Timeline Lasso ∆R2 Value:
Use the whole timeline dataset to do Lasso regression, instead of yearly Lasso. Apply drop-one
only to features selected by whole timeline Lasso (for other unselected features, set their ∆R2 =
0). Thus, each feature has only one ∆R2 value (instead of a sequence). Rank each feature’s full
∆R2 value from global whole timeline sample Lasso.

4.3.2 Feature Selection

After feature analysis, the next step is to do the feature selection using different combinations of
results from rankings. Define a selection tool called union score of each feature as the sum of
ranking position of this feature in each considered ranking:

Union Score =
∑
i

Position of this feature in Rank i

We design three different Union mechanisms to do feature selection (3 Unions for equity models, 3
Unions for bond models):

Union OLS bygroup: The first Union combines the results from Rank 1 and Rank 3, and then
for each of 8 Feature Group, selects the features with the TOP 10% lowest union scores, next,
integrates the winner features of each group together to get a final Union. There exist 15 selected
features in this Union. The reason of choosing 15 as the number of features used is that through
robustness checking, it is the number that best balances the performance and simplicity of fitted
OLS, definitely, the number of features can be easily varied based on preference.

Union OLS global: The second Union still combines the results from Rank 1 and Rank 3, but
never selects features separately by group, just globally ranks the union score across all 126 features,
to select the features with the TOP 15 lowest union scores.

Union Lasso global: The third union combines the results from Rank 4, 5, and 7, similarly,
globally ranks the union score across all 126 features, to select the features with the TOP 15 lowest
union scores.
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4.3.3 OLS Fitting

After feature selections, the third step is to use the features in three Unions to fit 3 benchmark OLS
models, then pick the best one as the Model A. There exist two parameters to be tuning within
the cross validation dataset during fitting, one is the winsorization level — the clipping strength
applied to the extreme values of features, X, we will use cross validation to choose the best quantile
threshold or MAD multiplier as our winning winsorization parameter.
The other parameter to be tuned is the Cook’s-distance trimming fraction, which decides the
dropping fraction of the extreme observations in the training set. After cross validation, we get a
winning group of these two parameters separately for each of the 3 OLS models, then we use the
whole training dataset and the winning parameters to fit the 3 models before comparison during
the test window. These two parameters are both just used to avoid possible unexpected effects of
some extreme outliers to make the OLS model more robust and commonly applicable.

4.3.4 Best OLS Model as Model A

We apply three performance evaluation criteria for the models in this project, based on these three
criteria, we can pick the best OLS model for equity and bond separately:

• Test R2: the first one is R² on the test set, which represents the proportion of variance in
the equity or bond return explained by the model, so the model with higher test R² is better;

• Test RMSE: the second one is RMSE on the test set, which represents the square root of
the mean squared prediction error of the model, so the model with lower test RMSE is better;

• Test Hit: the third one is hit rate, which represents the percent of test observations with
the same sign between actual return and predicted return, so the model with higher test hit
rate is better. Hit rate is important since we will construct the backtesting of our trading
strategies based on the sign of predicted return. Test Hit positive records the hit accuracy of
positive returns, Test Hit negative records the hit accuracy of negative returns.

Table 1: Performance Matrices of OLS models

Union test r2 test rmse test hit test positive hit test negative hit
OLS by-group — Equity 0.246015 0.0370468 0.779221 0.807018 0.7
OLS by-group — Bond 0.199836 0.0132431 0.623377 0.57377 0.8125
OLS global — Equity 0.246249 0.0370411 0.766234 0.814815 0.652174
OLS global — Bond 0.246599 0.0128503 0.675325 0.622642 0.791667
Lasso global — Equity 0.284514 0.0360886 0.779221 0.818182 0.681818
Lasso global — Bond 0.173281 0.0134611 0.597403 0.559322 0.722222

According to Table 1, For the equity return models, the best one is the OLS model fitted by the
features in the Union Lasso global, with the highest test R2, the lowest RMSE, and the highest hit
rate among three equity models. Meanwhile, for the bond return model, the best one is the OLS
model fitted by the features in another Union, the Union OLS global, also with the highest test
R2, the lowest RMSE, and the highest hit rate among three bond models. Therefore, these two
OLS models are selected as our Model A for equity and bond.
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4.3.5 Features and Parameters Used

Features:

Table 2: The significance and coefficient of each feature in Model A for Equity

feature description group p value coef
S&P 500 S&P’s Common Stock Price Index: Composite 8 1.21874e-36 0.907322
EXSZUSX Switzerland / U.S. Foreign Exchange Rate 6 0.00592243 -0.228628
HWI Help-Wanted Index for United States 2 0.0144579 2.83724e-05
UMCSENTX Consumer Sentiment Index 4 0.0358041 -0.00117675
BAA Moody’s Seasoned Baa Corporate Bond Yield 6 0.11959 0.0321099
NONBORRES Reserves Of Depository Institutions 5 0.255164 -0.0272074
CP3MX 3-Month AA Financial Commercial Paper Rate 6 0.291017 0.0271851
CES0600000007 Avg Weekly Hours: Goods-Producing 2 0.292305 -0.00316782
TB3MS 3-Month Treasury Bill 6 0.323452 -0.0241848
AAA Moody’s Seasoned Aaa Corporate Bond Yield 6 0.324417 -0.0205657
UEMP15T26 Civilians Unemployed for 15-26 Weeks 2 0.338673 0.0338658
UEMPMEAN Average Duration of Unemployment (Weeks) 2 0.348382 -0.00294267
BAAFFM Moody’s Baa Corporate Bond Minus FEDFUNDS 6 0.68829 0.00300715
AAAFFM Moody’s Aaa Corporate Bond Minus FEDFUNDS 6 0.718499 -0.00289464
HOUSTW Housing Starts, West 3 0.814679 0.000893541

According to Table 2, we can view the 15 features with their corresponding coefficients that are
included in the Model A for Equity, they are ranked by the significance (p-value). It is obvious
that in the Model A for Equity, most of features come from Group 6 called Interest and exchange
rates. Next, the features with p-value lower than 10 percent will be considered as top features,
which come from Group 6, Group 8 called Stock market, Group 2 called Labor market, and Group
4 called Consumption, orders, and inventories.

Table 3: The significance and coefficient of each feature in Model A for Bond

feature description group p value coef
IPB51222S IP: Residential Utilities 1 0.0159855 0.0287616
GS10 10-Year Treasury Rate 6 0.0227887 -0.0227313
S&P 500 S&P’s Common Stock Price Index: Composite 8 0.0436381 -0.0824559
CP3MX 3-Month AA Financial Commercial Paper Rate 6 0.0526529 -0.00603828
CLAIMSX Initial Claims 2 0.114713 0.0197047
CUSR0000SAC CPI: Commodities 7 0.136561 -0.48531
S&P DIV YIELD S&P’s Composite Common Stock: Dividend Yield 8 0.198893 -0.0261187
GS1 1-Year Treasury Rate 6 0.199714 -0.0137532
DNDGRG3M086SBEA Personal Cons. Exp: Nondurable goods 7 0.200347 0.323395
TB3MS 3-Month Treasury Bill 6 0.212179 0.00703499
AAA Moody’s Seasoned Aaa Corporate Bond Yield 6 0.216202 -0.00773869
GS5 5-Year Treasury Rate 6 0.399899 0.0089715
TB6MS 6-Month Treasury Bill 6 0.530077 0.00724673
CPIULFSL CPI: All Items Less Food 7 0.793269 -0.0962558
BAA Moody’s Seasoned Baa Corporate Bond Yield 6 0.970273 0.000197028

According to Table 3, we can view the 15 features with their corresponding coefficients that
are included in the Model A for Bond. Most of features still come from Group 6, where the
top-significance features come from Group 6, Group 8, and Group 1 called Output & income.
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Based on the two feature tables of Model A, we can say that the features in Group 6 and 8
are most important predictors for both equity and bond. Meanwhile, if ignoring the significance,
the selected features come from all eight groups, which means the diversification of our traditional
feature selection mechanism is also acceptable. That’s also the reason of keeping the by-group
Union selection mechanism.

Parameters:
For the Equity Model A, its winning winsorization parameter is 0.03 quantile threshold, its

winning Cook’s-distance trimming fraction parameter is 0.0167.
For the Bond Model A, its winning winsorization parameter is also 0.03 quantile threshold, its

winning Cook’s-distance trimming fraction parameter is 0.

4.4 AI Models - Boosting Machines

4.4.1 Explainable Boosting Machine (EBM)

Theory Explainable Boosting Machine (EBM) is a glass-box model in the generalized additive
model (GAM) family. It models the conditional expectation of the response as an additive combi-
nation of main effects and a limited number of pairwise interactions:

g(E[y | x]) = β0 +
∑
i

fi(xi) +
∑

(i,j)∈I

fij(xi, xj), (1)

where g(·) is a link function (e.g., identity for regression, logit for classification), β0 is a global bias
term, fi(·) are univariate shape functions for each feature, and fij(·, ·) are interaction terms for a
small set of feature pairs I.

This additive structure keeps the model fully decomposable: any prediction can be written as
a baseline plus a sum of interpretable contributions. The fi(·) are learned as flexible, non-linear
functions, allowing EBM to capture thresholds, plateaus, and other non-linear effects that linear
regression cannot, while preserving the ability to inspect exactly how each feature influences the
prediction.

Training Procedure EBM is trained using a boosting-style coordinate descent procedure that
updates one component at a time. At a high level, the algorithm cycles through features and, for
each feature, performs a small corrective step:

• Given the current model, compute residuals (negative gradients of the loss) with respect to
the predictions.

• For a single feature xi, fit a very shallow decision tree (typically depth-1 or depth-2) to predict
these residuals using only xi.

• Update the corresponding shape function fi(·) by adding a small multiple of the tree’s output,
controlled by a very small learning rate.

The algorithm loops over all features and repeats this process across many boosting iterations.
When interaction terms are enabled, the same logic is applied to selected pairs (xi, xj) to update
fij(·, ·), but the number of such interaction terms is kept deliberately small.

Two design choices are critical:
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1. Small learning rate. Each update uses a very small step size, so no single iteration can
dominate the model. This has two consequences: (i) the model does not overweight any
individual feature early in training, and (ii) the effective solution is largely invariant to the
order in which features are visited, because many tiny updates are averaged over repeated
passes through all features.

2. Shallow trees per feature. Each per-feature learner is a shallow tree, which enforces
smooth, low-variance shape functions and keeps the complexity of each fi(·) tightly controlled.
The goal is not to grow a deep forest, but to accumulate many small, simple corrections that
add up to a stable one-dimensional effect.

The resulting model is therefore closer to a regularized additive surface than to a typical boosted
forest: prediction power comes from many small, coordinated adjustments across features, rather
than from a few highly expressive trees.

Figure 1: EBM training workflow: in each boosting iteration, shallow trees are fit feature by feature
on residuals, with small learning-rate updates to the corresponding shape functions.

Cross-Validation To obtain an honest estimate of out-of-sample performance in a time-series
setting, the EBM is evaluated using a time-aware cross-validation scheme inspired by purged k-fold
with embargo. The full time series is first split into an 80% training window and a 20% hold-out
test window. All model selection and tuning is performed exclusively within the training window.

Within that training window, a 5-fold cross validation is constructed over contiguous time
blocks. For each fold:

1. A contiguous segment of the training window is designated as the validation block.

2. An embargo region is defined immediately after the validation block, with length set to ap-
proximately 1% of the total training period (when sufficient data is available).
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3. The training set for that fold consists of all remaining observations in the training window,
i.e., all data before the validation block and all data after the embargo region. The model
is thus trained on data from both earlier and later periods, but never on the validation block
itself or its embargo buffer.

This design has two goals. First, by holding out the entire validation block and its subsequent
embargo region, the fold reduces temporal leakage arising from short-horizon dependence, overlap-
ping feature windows, or regime shifts that span the validation boundary. Second, by allowing the
training set to include data both before and after the validation block, the procedure preserves
sample efficiency, using as much data as possible while still respecting temporal structure.

The folds slide forward through the training window, so that different time segments serve as
validation blocks across the 5 folds. Model hyperparameters (e.g., number of boosting iterations,
maximum tree depth, learning rate, and number of interactions) are selected by averaging the
validation performance across folds. After tuning, the final model is refit on the entire training
window and evaluated once on the untouched 20% test window.

Figure 2: Time-series cross-validation scheme (purged k-fold with embargo). For each fold, the
validation block (blue) is held out; an embargo region (gray) after validation is removed from
training; all remaining data before and after are used for training (green).

This setup ensures that performance estimates for the EBM reflect realistic forward-looking
behavior and are not inflated by subtle temporal leakage.
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Interpretation and Visualization Because EBM maintains separate components for each fea-
ture and interaction, interpretation reduces to inspecting these learned shape functions:

• Global importance. Overall feature importance scores summarize which fi(·) contribute
most to the loss reduction and to prediction variance. This ranking is used to identify the
dominant drivers in the model.

• Shape functions. For each continuous feature xi, the learned curve fi(xi) shows how the
feature’s contribution varies across its range. These curves are typically plotted together
with the empirical distribution (e.g., a histogram or kernel density) of xi to distinguish well-
supported regions from sparsely populated tails.

• Interaction terms. When interaction components fij(xi, xj) are enabled, they are visualized
using 2D heatmaps or contour plots, which reveal non-additive effects between selected pairs
of variables.

• Local explanations. For a given observation x, the prediction decomposes into

g(ŷ) = β0 +
∑
i

fi(xi) +
∑

(i,j)∈I

fij(xi, xj),

providing an exact additive breakdown of how each feature pushes the prediction up or down
relative to the baseline.

Figure 3: Example EBMmain-effect shape function for an S&P 500 feature. The blue line shows the
learned contribution fi(xi); the orange bars show the empirical density of the feature, emphasizing
regions with strong data support.

This combination of a carefully regularized training procedure (small learning rate, shallow
trees) and additive structure yields a model that is both competitive in accuracy and straightforward
to audit using a small set of plots.
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(Hyper)Parameters Used

Table 4: Best hyperparameters for EBM Bond and Equity models

Hyperparameter What it Controls Bond Model Equity Model Test Range

interactions Number of interactions 7 7 [5, 10]
max bins Number of bins per feature 16 16 {16, 32, 64, 128}
learning rate Boosting learning rate 1.33e-4 2.64e-4 [10−4, 5× 10−2]
min samples leaf Minimum samples in a leaf 38 174 [5, 200]
max leaves Maximum leaves per tree 4 2 [2, 5]
outer bags Bagging iterations 9 21 [8, 30]
validation size Data used for validation 0.34 0.29 [0.15, 0.35]
max rounds Maximum boosting rounds 4863 1082 [1000, 5000]
early stopping rounds Rounds before stopping 43 49 [10, 50]
early stopping tolerance Minimum improvement 1.0e-4 1.0e-4 fixed
random state Random seed 42 42 fixed
n jobs Number of parallel threads -1 -1 fixed

The table summarizes the optimal hyperparameters found for the EBM Bond model and the EBM
Equity model, along with the search ranges explored during hyperparameter tuning. Overall, both
models share a very similar structural configuration, but several key differences highlight how the
models adapt to the characteristics of bond vs. equity returns.

If we look at model complexity, both models allow the same maximum depth of feature interac-
tions, meaning neither asset class required higher-order interaction terms to improve performance.

For bonds, the model uses more leaves per tree and smaller minimum samples per leaf to fit
subtle nonlinear patterns in the residuals. In contrast, the equity model forces very large leaf sizes
and fewer leaves, which makes the function much smoother and much less sensitive to local noise.
That’s is to say, bond model is a tree with finer but more leaves, and equity model is a tree with
larger but fewer leaves.

If we look at the regularization, the equity model uses more outer bags and stops after fewer
boosting rounds. It suggests that the model is conservative and only learns the strongest, most
persistent signals. The bond model, on the other hand, needs fewer bags but many more boosting
rounds. The model can safely use extra flexibility and more iterations to capture finer structure.

Overall, the contrast between these two columns is consistent with our economic intuition:equity
returns are noisy and require a highly regularized, low-variance model, while bond returns are
smoother and can be modeled with higher flexibility.

18



Explainability

Figure 4: EBM Equity Feature Importance

Here are some top features which contribute most to the predictability of the model. We can
see that the interaction functions contribute most to the prediction and almost all the features in
interaction functions are from consumer spending. In economic intuition, consumption did serve as
a good indication of equity prosperity and the model further demonstrates it. For deeper research
on equity and macroeconomic indicators, it’s a good direction to start from consumer spending.

Figure 5: EBM Bond Feature Importance

For bond models, it’s more complex. Consumer credit and household spending are the dominant
drivers. Labor market stress signals also matter significantly. In addition to these factors, we have
Industrial and Production Indicators, Monetary and Financial Market Variables.
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4.4.2 LightGBM

Theory

Figure 6: Illustration of LightGBM inference under gradient boosting: each successive tree is fit to
the residuals of the current ensemble, and the final prediction is obtained by aggregating per-tree
contributions (scaled by the learning rate).

LightGBM is a gradient-boosted decision tree (GBDT) framework that constructs an additive
predictive model by sequentially fitting a collection of shallow decision trees. Instead of estimating
a single complex function, the boosting procedure iteratively minimizes a differentiable loss: at
each iteration, a new tree is trained to approximate the negative gradient of the objective function
with respect to the current ensemble predictions, thereby correcting residual errors left by previous
trees.

To efficiently identify split points, LightGBM adopts a histogram-based split finding algorithm.
Continuous features are discretized into a finite number of bins, and candidate splits are evaluated
using aggregated gradient and Hessian statistics to maximize the reduction in the objective function.
Tree growth follows a leaf-wise strategy, whereby the leaf that yields the largest gain is split at each
step. This approach allows the model to capture complex nonlinear interactions under a fixed leaf
budget while maintaining computational efficiency.

As illustrated in Fig. 6, the first tree produces an initial prediction based on features observed
at time T (e.g., dividend yield, P/E ratio, and volatility). Subsequent trees are fit to the residuals
of the current ensemble and act as incremental corrections. The final forecast at T+1 is obtained by
summing the contributions from all trees, scaled by the learning rate, with additional regularization
and subsampling mechanisms (e.g., depth and leaf constraints, row and column sampling) employed
to mitigate overfitting.
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Hyperparameters Used

Table 5: Optimized LightGBM hyperparameters for residual-prediction Model C across bond and
equity datasets. Hyperparameters are selected via Optuna with a Tree-structured Parzen Estimator
(TPE) sampler over 500 trials to maximize cross-validated R2

Hyperparameter What it Controls Bond Model C Equity Model C

num leaves Maximum tree leaves 31 135
max depth Maximum tree depth 6 12
learning rate Boosting learning rate 0.0776 0.0823
min child samples Minimum data in leaf 10 10
subsample Row sampling ratio 0.687 0.687
colsample bytree Column sampling ratio 0.839 0.952
reg alpha L1 regularization 0.142 0.020
reg lambda L2 regularization 0.650 0.585
n estimators Number of boosting rounds 3 3

Table 5 reports the key hyperparameters used in the residual-prediction LightGBM models
(Model C) and highlights systematic differences between the bond and equity specifications. The
table summarizes the principal controls governing model complexity and regularization, including
tree depth, number of leaves, learning rate, subsampling ratios, and ℓ1/ℓ2 penalties. All hyper-
parameters are tuned using Optuna’s Tree-structured Parzen Estimator (TPE) sampler over 500
trials, with the objective of maximizing cross-validated R2.

The resulting configurations reveal clear structural contrasts between the two asset classes. The
equity model is characterized by deeper trees and a substantially larger number of leaves, indicating
richer nonlinear interactions in equity returns. In contrast, the bond model favors shallower trees
and stronger ℓ1 regularization, yielding a more parsimonious and sparse representation. These
differences are consistent with the view that bond returns are driven by a smaller set of dominant
risk factors, whereas equity returns exhibit more complex nonlinear dynamics.

Overall, the optimized hyperparameters not only improve predictive performance but also pro-
vide economically interpretable evidence of fundamental differences in the return-generating pro-
cesses across asset classes.

Explainability: Equity Model

(a) Top macroeconomic features ranked by gain-
based importance.

(b) Top 15 features by gain importance from the
LightGBM model.

Figure 7: Feature importance from the LightGBM residual-prediction equity model. Gain measures
the cumulative reduction in the loss function attributable to splits on each feature across all trees.
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Figures 7a and 7b report feature importance measures derived from the LightGBM residual-
prediction model, based on gain—the cumulative reduction in the objective function resulting from
splits on a given feature across all trees. This metric highlights variables that contribute most
strongly to improving predictive accuracy within the nonlinear ensemble.

Short-term interest rates, proxied by the 6-month Treasury bill rate (TB6MS), emerge as the
most influential feature. This finding underscores the central role of monetary policy conditions in
shaping equity returns, consistent with their impact on discount rates, risk premia, and broader
financial conditions. Consumer- and demand-oriented indicators—such as durable goods produc-
tion, real consumption, and housing starts—also rank prominently, reflecting the importance of
growth expectations and cyclical dynamics for equity valuation.

Measures of credit availability and income, including commercial and industrial loans and real
personal income, further contribute to explanatory power, highlighting the link between financing
conditions, corporate profitability, and equity performance. Finally, the weighted U.S. dollar ex-
change rate appears among the top features, indicating that external competitiveness and currency
valuation play a nontrivial role in determining equity returns.

Explainability: Bond Model

(a) Top macroeconomic features ranked by gain-
based importance.

(b) Top 15 features by gain importance from the
LightGBM model.

Figure 8: Feature importance from the LightGBM residual-prediction bond model. Gain measures
the cumulative reduction in the loss function attributable to splits on each feature across all trees.

Figures 8a and 8b report gain-based feature importance from the bond LightGBM residual-
prediction model. As in the equity case, gain captures the cumulative reduction in the objective
function attributable to splits on each variable, highlighting features that most effectively improve
predictive accuracy for bond returns.

Employment- and construction-related variables, including construction employment and con-
struction spending, dominate the importance ranking. These variables proxy real economic activity
and labor market conditions, which are closely linked to expectations about future growth, infla-
tionary pressures, and monetary policy responses—key determinants of bond yields and excess
bond returns.

Inflation-related measures, such as CPI excluding shelter, and short-term rate spreads, such as
the 3-month Treasury bill minus the federal funds rate, also rank prominently. Their importance
reflects the sensitivity of bond returns to changes in inflation dynamics and shifts in the expected
path of monetary policy, consistent with term structure and expectations-based models of bond
pricing.
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Manufacturing activity and retail indicators further contribute to explanatory power, comple-
menting traditional interest-rate-based factors by capturing cyclical fluctuations in real activity
that influence term premia.

5 Model Assessment

5.1 Performance Metrics

All performance metrics are generated by applying the models to the test dataset.

5.1.1 Individual Models Before Integration

Table 6: Performance Matrices of Three Individual Models for Equity (1-Month Lag)

Model Type Test R2 Test RMSE Test Hit Rate
Model A (OLS) 28.45% 0.0361 77.92%
Model D (EBM) 22.79% 0.0374 75.64%
Model E (LightGBM) 26.42% 0.0366 74.03%

Table 7: Performance Matrices of Three Individual Models for Bond (1-Month Lag)

Model Type Test R2 Test RMSE Test Hit Rate
Model A (OLS) 24.66% 0.0129 67.53%
Model D (EBM) 19.75% 0.0132 64.10%
Model E (LightGBM) 16.76% 0.0135 64.93%

According to Table 6 and Table 7, for both Equity and Bond, the OLS benchmark model is the
undoubted winner with the highest test R2, the lowest test RMSE, and the highest hit rate. The
two more boosting machine models do not perform better than the traditional regression model if
we separately apply them in predictions.

There are only three common Top features existing in all three Equity models, which are S&P
500 Index, Switzerland / U.S. Foreign Exchange Rate, and Help-Wanted Index for United States.
And there are only two common Top features existing in all three Bond models, which are 10-Year
Treasury Rate, IP: Residential Utilities. These prove that there exist significant differences in the
selected features between traditional regression model and AI model.

Thus, we realize that if only applying these three models separately, we cannot fully harness
AI models’ strong power of capturing nonlinear effects and learning interactions. Therefore, we
have integrated the traditional regression model with two boosting machine models. Let Human
collaborate with AI.

5.1.2 Integrated Models

This section compares the performance matrices of Model A, Model B, and Model C under two
lag specifications. Model A is a baseline OLS forecast; Model B augments the OLS forecast with an
EBM model fitted on OLS residuals; and Model C augments the OLS forecast with a LightGBM
model fitted on OLS residuals. Performance is evaluated using three standard test metrics: Test
R2, Test RMSE, and Test Hit Rate.

Table 8: Performance Matrices of Integrated Models for Equity with 1-Month Lag
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Model Type Test R2 Test RMSE Test Hit Rate
Model A (OLS) 28.45% 0.0361 77.92%
Model B (EBM + OLS) 28.45% 0.0361 77.92%
Model C (LightGBM + OLS) 28.84% 0.0360 79.22%

According to Table 8, under the one-month lag specification, the Equity results indicate that
Model A and Model B are effectively indistinguishable. Both deliver the same Test R2 of 28.45%,
Test RMSE of 0.0361, and Test Hit Rate of 77.92%. In this setting, the EBM residual correction
does not yield a measurable incremental gain over the OLS baseline for Equity returns. By contrast,
Model C achieves a modest but consistent improvement across all three metrics, with a higher R2

= 28.84%, a lower RMSE = 0.0360, and a higher Hit Rate = 79.22%.

Table 9: Performance Matrices of Integrated Models for Bond with 1-Month Lag

Model Type Test R2 Test RMSE Test Hit Rate
Model A (OLS) 24.66% 0.01285 67.53%
Model B (EBM + OLS) 23.87% 0.01292 68.83%
Model C (LightGBM + OLS) 26.41% 0.01270 70.13%

According to Table 9, for Bond results under the same one-month lag, Model C again delivers
the strongest overall performance with a higher Test R2 = 26.41%, a lower RMSE = 0.01270, and
a higher Hit Rate = 70.13%. The performance gaps between Model C and other two models are
even larger for Bond returns than for Equity returns.

Taken together across equity and bond panels, under the one-month lag specification, the Pre-
dictive Accuracy Ordering is: Model C > Model A ≥ Model B.

Beyond predictive metrics, the models are also compared along two model-structure-related
dimensions. The first dimension is Model Transparency, which is defined as the extent to which
the model can be directly read and understood from its functional form and parameters. Under
this definition, Model A is most transparent because it is a single linear regression with a moderate
number of coefficients. The OLS fitting is constructed from the pool of 126 candidate FRED
features but retains only a selected subset (15 predictors) after multi-criteria feature selection,
which supports the direct coefficient-based inspection. Model B is less transparent than pure OLS
because it adds a non-linear residual layer (EBM) on top of the linear baseline, even though the
residual component remains relatively structured. Model C is least transparent because its residual
layer is a LightGBM ensemble with many splits and interactions, making it difficult to interpret
directly from model parameters.

Accordingly, the Transparency Ordering is: Model A ≥ Model B ≫ Model C.
The second dimension is Economic Interpretability, which is defined as a distinct concept: it

refers to how naturally the model structure maps into an economically meaningful narrative. Model
B ranks highest on this dimension because it preserves the OLS component as a clean set of linear
exposures while using EBM to model the remaining residual variation via smooth, additive shape
functions (and only a limited number of interactions when explicitly included). This interpretation
is strengthened by the residual-modeling design that the residual models are trained on macro-only
features, specifically, 116 macro variables after excluding ten “price-like” predictors, so that the
residual learner is directed toward non-linear macro structure rather than re-using dominant price
signals. Model A remains economically interpretable at the linear level, but it cannot represent
non-linear macro effects by construction. Model C, despite strong predictive accuracy in the one-
month lag setting, is hardest to interpret economically because the LightGBM residual layer can
encode irregular, high-order statistical interactions that are difficult to summarize into a compact
economic mechanism.
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Thus, the Economic Interpretability Ordering is: Model B > Model A ≫ Model C

Table 10: Performance Matrices of Integrated Models for Equity with 2-Month Lag

Model Type Test R2 Test RMSE Test Hit Rate
Model A (OLS) 0.68% 0.0427 59.74%
Model B (EBM + OLS) 0.69% 0.0427 59.74%
Model C (LightGBM + OLS) -1.72% 0.0432 59.74%

According to Table 10, under the two-month lag specification, predictive performance deterio-
rates materially relative to the one-month case. For Equity returns, Model A and Model B remain
nearly identical, with Test R2 of 0.68% and 0.69%, identical RMSE = 0.0427, and identical Hit
Rate = 59.74%. Model C under-performs other two models in two-month lag setting, with an even
negative Test R2 = -1.72% and a higher RMSE = 0.0432.

Table 11: Performance Matrices of Integrated Models for Bond with 2-Month Lag

Model Type Test R2 Test RMSE Test Hit Rate
Model A (OLS) -9.91% 0.01568 50.65%
Model B (EBM + OLS) -11.04% 0.01576 48.05%
Model C (LightGBM + OLS) -12.56% 0.01587 48.05%

According to Table 11, for Bond returns, all three models exhibit negative test R2, where Model
A performs best (least badly).

Overall, in two-month lag setting, the residual-boosting does not improve predictive accuracy
beyond the OLS baseline and can be detrimental, particularly for the LightGBM residual model.
The around-50% hit rates suggest that, when macroeconomic variables lead returns by two months,
all three models contain little to no out-of-sample directional information: their sign predictions are
essentially no better than a coin flip, implying that the macro features’ ability to forecast return
direction largely vanishes at this horizon and is dominated by noise or unstable relationships.
The close-to-zero and even negative R2 values indicate that these models’ out-of-sample squared
prediction errors exceed those of a naive benchmark that always predicts the test-sample mean; in
other words, the models fail not only to improve directional accuracy but also to outperform the
simplest mean-based baseline in terms of magnitude (mean-squared-error) forecasting.

The reason for introducing the two-month lag specification is to avoid possible look-ahead bias.
Think about an example, if we want to predict the price change from December 1st, 2025 to January
1st, 2026, or said January return, for avoiding look ahead bias, we should only use the information
of macro features up to December 1st, but we find a problem in the FRED database, where the
date index of each feature cannot be ensured to be the same as the real published date, some
features recorded with the time index of December 1st may be actually published on some days
later than December 1st, which bring the risk of look-ahead bias. For avoiding this risk, the safest
and simplest way is to add one more lag between the features and returns, however, the significant
deterioration of performance of models suggests that this method is too conservative, it will throw
out some information that is actually legal to be incorporated in the model. The bad results under
two-month lag specification do not mean that our fitted models are useless in forecasting. Instead,
according to the results under one-month lag specification, we believe that our integration methods
improve the predictive accuracy to a certain extent, but we also need to further explore a more
suitable method to eliminate the risk of look-ahead bias in the future, to make our performance
evaluations of these models more realistic and trustworthy.
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5.2 Equity Models Confusion Matrix

The following figures present the confusion matrix for predicting equity index returns from all three
models. We see that all three equities models perform very similarly in terms of binary classification
using confusion matrix in either cases. We observe that Model C (Linear + LightGBM) performs
slightly better than other two models in the 1 Month Lag case. In the case of equity, we believe
that EBM and LightGBM do not learn much useful information on top of the ones learned by linear
model.

Figure 9: Equity Models Confusion Matrix with 1 Month Lag between X and Y

Figure 10: Equity Models Confusion Matrix with 2 Months Lag between X and Y
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5.3 Bond Models Confusion Matrix

The following figures present the confusion matrix for predicting bond index returns from all three
models. In the case of one month lag between x and y variables, we observe that Model C (Linear
+ LightGBM) performs the best and Model A (Linear Model) performs the worst out of all three
models. This might suggest that both LightGBM and EBM learn new information about relation-
ship between macro variables and equity index return that is not learned by the linear model. In
the case of two months lag between x and y variables, both Model B and Model C perform worse
than Model A, suggesting that in this case EBM and LightGBM don’t learn useful information in
addition to linear predictions.

Figure 11: Bond Models Confusion Matrix with 1 Month Lag between X and Y

Figure 12: Bond Models Confusion Matrix with 2 Months Lag between X and Y
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6 Backtesting

6.1 Equity Models Backtest Performance Analysis

For equity predictions at 1-month lag, all three models demonstrate exceptional but very similar
outperformance, with Model C achieving the highest performance with 543% cumulative return
versus 129% for the buy-and-hold benchmark—a 4.2x improvement. Model C maintains superior
risk-adjusted metrics with a Sharpe ratio of 2.45, Sortino ratio of 4.74, and reduced maximum
drawdown of −18.41% (versus −24.12% for buy-and-hold). The maximum drawdown period is also
compressed from 23 months to 11 months, demonstrating faster recovery.

However, performance degrades significantly at 2-month prediction horizons. For equities,
Model C’s cumulative return drops from 543% to 98%, though it still marginally outperforms the
benchmark (97.75% vs. 93.29%). Notably, Models A and B underperform with higher drawdowns
(−29.65%), while Model C maintains benchmark-level risk.

The portfolio evolution charts illustrate Model C’s outperformance among three models in terms
of return and risk metrics. The divergence between 1-month and 2-month performance highlights
the potential inflation brought by look-ahead bias due to macro statistics reported after first day
of the month as well as decays in alpha brought by legal macro features.

Figure 13: Equity Models (1 Month Lag) Backtest Chart
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Figure 14: Equity Models (2 Month Lag) Backtest Chart
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Table 12: Backtest Performance: Equity Returns (1 Month Lag)

Metric Buy & Hold Model A Model B Model C

Cumulative Return 128.77% 495.47% 495.47% 543.27%
Annualized Return 13.77% 32.06% 32.06% 33.65%
Annualized Volatility 14.97% 12.99% 12.99% 12.75%
Sharpe Ratio 0.76 2.28 2.28 2.45
Sortino Ratio 1.40 4.61 4.61 4.74
Calmar Ratio 0.57 1.74 1.74 1.83
Maximum Drawdown -24.12% -18.41% -18.41% -18.41%
Max DD Period 2022-01 to 2022-12 to 2022-12 to 2022-12 to

2023-11 2023-10 2023-10 2023-10

Table 13: Backtest Performance: Equity Returns (2 Month Lag)

Metric Buy & Hold Model A Model B Model C

Cumulative Return 93.29% 89.76% 89.76% 97.75%
Annualized Return 10.82% 10.50% 10.50% 11.21%
Annualized Volatility 15.04% 15.06% 15.06% 15.02%
Sharpe Ratio 0.56 0.54 0.54 0.59
Sortino Ratio 1.06 1.13 1.13 1.22
Calmar Ratio 0.45 0.35 0.35 0.46
Maximum Drawdown -24.12% -29.65% -29.65% -24.12%
Max DD Period 2021-12 to 2021-12 to 2021-12 to 2021-12 to

2023-10 2024-04 2024-04 2023-12

6.2 Bond Models Backtest Performance Analysis

The bond models exhibit strong performance at 1-month horizons but also experience substan-
tial degradation at 2-month lags similar to equity models. At 1-month lag, Model C (Linear +
LightGBM) demonstrates best performance with 75.58% cumulative returns versus 6.83% for the
buy-and-hold benchmar while maintaining lower volatility (4.49% vs. 5.19%) and reduced maxi-
mum drawdown (−2.84% vs. −14.86%). The Sharpe ratio of 1.51 indicates strong risk-adjusted
returns, substantially exceeding the benchmark’s negative Sharpe ratio of −0.26, with Fed Funds
Rate of each month being the the risk free rate. All ML models compress the maximum drawdown
period from 47 months to just 4 months and effectively evaded the bond market crash in 2022,
demonstrating faster recovery from adverse periods.

However, the 2-month prediction horizon reveals a huge drop in model efficacy. Model C’s
performance collapses dramatically, returning only 3.75% with a negative Sharpe ratio of −0.35,
underperforming even the benchmark’s 7.82% return. Interestingly, Model B (Linear + EBM)
emerges as the most robust at 2-month lag, delivering 9.48% returns with the lowest drawdown
(−12.34%) and the best Sharpe ratio (−0.19) among all strategies. This suggests that EBM’s
interpretable additive structure provides more stable predictions when forecasting farther into the
future, whereas LightGBM’s complex interactions may capture noise rather than signal at extended
horizons. Such drastic drop in all model performance from 1 month lag to 2 month lag scenario
again illustrates the inflation of backtest performance caused by look-ahead bias and also legal
macro features at 1 month lag.
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Figure 15: Bond Models (1 Month Lag) Backtest Chart
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Figure 16: Bond Models (2 Month Lag) Backtest Chart
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Table 14: Backtest Performance: Bond Returns (1 Month Lag)

Metric Buy & Hold Model A Model B Model C

Cumulative Return 6.83% 61.45% 61.64% 75.58%
Annualized Return 1.03% 7.75% 7.77% 9.17%
Annualized Volatility 5.19% 4.70% 4.70% 4.49%
Sharpe Ratio -0.26 1.14 1.14 1.51
Sortino Ratio -0.40 1.69 1.68 3.01
Calmar Ratio 0.07 1.99 1.99 3.23
Maximum Drawdown -14.86% -3.90% -3.90% -2.84%
Max DD Period 2021-01 to 2018-07 to 2018-07 to 2018-07 to

2024-11 2018-10 2018-10 2018-10

Table 15: Backtest Performance: Bond Returns (2 Month Lag)

Metric Buy & Hold Model A Model B Model C

Cumulative Return 7.82% 7.46% 9.48% 3.75%
Annualized Return 1.18% 1.13% 1.42% 0.58%
Annualized Volatility 5.25% 5.25% 5.24% 5.26%
Sharpe Ratio -0.23 -0.24 -0.19 -0.35
Sortino Ratio -0.36 -0.37 -0.29 -0.53
Calmar Ratio 0.08 0.08 0.12 0.04
Maximum Drawdown -14.86% -14.39% -12.34% -15.87%
Max DD Period 2020-12 to 2021-07 to 2020-12 to 2020-05 to

2024-11 2024-11 2023-10 2024-11

7 Conclusion

This paper develops an interpretable macroeconomic forecasting framework that bridges tradi-
tional regression models and advanced boosting machine learning techniques, a practical path from
black-box AI predictive modeling toward a ”crystal-box” approach. By integrating an economi-
cally interpretable OLS model with residual modeling by Explainable Boosting Machines and Light
Gradient Boosting Machines, we demonstrate that it is possible to improve predictive performance
and trading outcomes, after more effectively controlling for look-ahead bias.

For predictions with 1 month lag between features and indices returns:

• Predictive Accuracy: OLS + LightGBM > OLS ≥ OLS + EBM

• Model Transparency: OLS ≥ OLS + EBM ≫ OLS + LightGBM

• Economic Interpretability: OLS + EBM > OLS ≫ OLS + LightGBM

For predictions with 2 month lag between features and indices returns:

• Predictive Accuracy: OLS ≈ OLS + EBM > OLS + LightGBM
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8 Executive Summary (Key 3 Messages)

• OLS learns good amount of information to predict returns on equity and bond indices, and
performance can be enhanced by using machine learning models to learn residuals of OLS
prediction, after controling for look-ahead bias and retaining legal macro features. The overall
strategy would outperform standalone models and buy-and-hold benchmark in most settings.

• Macroeconomic signals related to monetary policy, consumption, housing, and labor markets
consistently emerge as key drivers of both equity and bond returns.

• Predictive gains and trading performance decay rapidly as the forecast horizon extends,
highlighting the importance of information timeliness and careful handling of look-ahead bias
in macro-based strategies.

9 Limitations and Future Work

Several limitations remain critical to this project. The analysis relies on U.S.-centric macroeco-
nomic indicators, which may not fully capture global dynamics embedded in international asset
indices. Model performance is also sensitive to data release timing, transformation choices, and lag
assumptions. Future research could extend the framework to multi-country macro panels, higher-
frequency data, proprietary data with controlled look-ahead bias and regime-dependent modeling.
Incorporating real-time data vintages, alternative explainability methods, and portfolio-level allo-
cation rules would further enhance robustness and practical relevance.
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Appendix: FRED-MD Variable Definitions and Transformations

The column tcode denotes the following data transformation for a series xt: (1) no transforma-
tion; (2) ∆xt; (3) ∆

2xt; (4) log(xt); (5) ∆ log(xt); (6) ∆
2 log(xt); (7) ∆(xt/xt−1 − 1.0). Variables

marked with an asterisk (*) indicate adjustments relative to raw FRED data. :contentRefer-
ence[oaicite:1]index=1

Table 16: Group 1: Output and income

id tcode fred description

1 1 RPI Real Personal Income
2 2 W875RX1 Real personal income ex transfer receipts
3 6 INDPRO IP Index
4 7 IPFPNSS IP: Final Products and Nonindustrial Supplies
5 8 IPFINAL IP: Final Products (Market Group)
6 9 IPCONGD IP: Consumer Goods
7 10 IPDCONGD IP: Durable Consumer Goods
8 11 IPNCONGD IP: Nondurable Consumer Goods
9 12 IPBUSEQ IP: Business Equipment
10 13 IPMAT IP: Materials
11 14 IPDMAT IP: Durable Materials
12 15 IPNMAT IP: Nondurable Materials
13 16 IPMANSICS IP: Manufacturing (SIC)
14 17 IPB51222s IP: Residential Utilities
15 18 IPFUELS IP: Fuels
16 20 CUMFNS Capacity Utilization: Manufacturing
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Table 17: Group 2: Labor market

id tcode fred description

21 2 HWI Help-Wanted Index for United States
22 2 HWIURATIO Ratio of Help Wanted/No. Unemployed
23 5 CLF16OV Civilian Labor Force
24 5 CE16OV Civilian Employment
25 2 UNRATE Civilian Unemployment Rate
26 2 UEMPMEAN Average Duration of Unemployment (Weeks)
27 5 UEMPLT5 Civilians Unemployed - Less Than 5 Weeks
28 5 UEMP5TO14 Civilians Unemployed for 5–14 Weeks
29 5 UEMP15OV Civilians Unemployed - 15 Weeks & Over
30 5 UEMP15T26 Civilians Unemployed for 15–26 Weeks
31 5 UEMP27OV Civilians Unemployed for 27 Weeks and Over
32 5 CLAIMSx Initial Claims
33 5 PAYEMS All Employees: Total nonfarm
34 5 USGOOD All Employees: Goods-Producing Industries
35 5 CES1021000001 All Employees: Mining and Logging: Mining
36 5 USCONS All Employees: Construction
37 5 MANEMP All Employees: Manufacturing
38 5 DMANEMP All Employees: Durable goods
39 5 NDMANEMP All Employees: Nondurable goods
40 5 SRVPRD All Employees: Service-Providing Industries
41 5 USTPU All Employees: Trade, Transportation & Utilities
42 5 USWTRADE All Employees: Wholesale Trade
43 5 USTRADE All Employees: Retail Trade
44 5 USFIRE All Employees: Financial Activities
45 5 USGOVT All Employees: Government
46 1 CES0600000007 Avg Weekly Hours : Goods-Producing
47 2 AWOTMAN Avg Weekly Overtime Hours : Manufacturing
48 1 AWHMAN Avg Weekly Hours : Manufacturing

127 6 CES0600000008 Avg Hourly Earnings : Goods-Producing
128 6 CES2000000008 Avg Hourly Earnings : Construction
129 6 CES3000000008 Avg Hourly Earnings : Manufacturing

Table 18: Group 3: Housing

id tcode fred description

50 4 HOUST Housing Starts: Total New Privately Owned
51 4 HOUSTNE Housing Starts, Northeast
52 4 HOUSTMW Housing Starts, Midwest
53 4 HOUSTS Housing Starts, South
54 4 HOUSTW Housing Starts, West
55 4 PERMIT New Private Housing Permits (SAAR)
56 4 PERMITNE New Private Housing Permits, Northeast (SAAR)
57 4 PERMITMW New Private Housing Permits, Midwest (SAAR)
58 4 PERMITS New Private Housing Permits, South (SAAR)
59 4 PERMITW New Private Housing Permits, West (SAAR)
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Table 19: Group 4: Consumption, orders, and inventories

id tcode fred description

3 5 DPCERA3M086SBEA Real personal consumption expenditures
4 5 CMRMTSPLx Real Manu. and Trade Industries Sales
5 5 RETAILx Retail and Food Services Sales

64 5 ACOGNO New Orders for Consumer Goods
65 5 AMDMNOx New Orders for Durable Goods
66 5 ANDENOx New Orders for Nondefense Capital Goods
67 5 AMDMUOx Unfilled Orders for Durable Goods
68 5 BUSINVx Total Business Inventories
69 2 ISRATIOx Total Business: Inventories to Sales Ratio
130 2 UMCSENTx Consumer Sentiment Index

Table 20: Group 5: Money and credit

id tcode fred description

70 6 M1SL M1 Money Stock
71 6 M2SL M2 Money Stock
72 5 M2REAL Real M2 Money Stock
73 6 BOGMBASE Monetary Base
74 6 TOTRESNS Total Reserves of Depository Institutions
75 7 NONBORRES Reserves Of Depository Institutions
76 6 BUSLOANS Commercial and Industrial Loans
77 6 REALLN Real Estate Loans at All Commercial Banks
78 6 NONREVSL Total Nonrevolving Credit
79 2 CONSPI Nonrevolving consumer credit to Personal Income
132 6 DTCOLNVHFNM Consumer Motor Vehicle Loans Outstanding
133 6 DTCTHFNM Total Consumer Loans and Leases Outstanding
134 6 INVEST Securities in Bank Credit at All Commercial Banks
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Table 21: Group 6: Interest and exchange rates

id tcode fred description

84 2 FEDFUNDS Effective Federal Funds Rate
85 2 CP3Mx 3-Month AA Financial Commercial Paper Rate
86 2 TB3MS 3-Month Treasury Bill
87 2 TB6MS 6-Month Treasury Bill
88 2 GS1 1-Year Treasury Rate
89 2 GS5 5-Year Treasury Rate
90 2 GS10 10-Year Treasury Rate
91 2 AAA Moody’s Seasoned Aaa Corporate Bond Yield
92 2 BAA Moody’s Seasoned Baa Corporate Bond Yield
93 1 COMPAPFFx 3-Month Commercial Paper Minus FEDFUNDS
94 1 TB3SMFFM 3-Month Treasury C Minus FEDFUNDS
95 1 TB6SMFFM 6-Month Treasury C Minus FEDFUNDS
96 1 T1YFFM 1-Year Treasury C Minus FEDFUNDS
97 1 T5YFFM 5-Year Treasury C Minus FEDFUNDS
98 1 T10YFFM 10-Year Treasury C Minus FEDFUNDS
99 1 AAAFFM Moody’s Aaa Corporate Bond Minus FEDFUNDS
100 1 BAAFFM Moody’s Baa Corporate Bond Minus FEDFUNDS
101 5 TWEXAFEGSMTHx Trade Weighted U.S. Dollar Index
102 5 EXSZUSx Switzerland / U.S. Foreign Exchange Rate
103 5 EXJPUSx Japan / U.S. Foreign Exchange Rate
104 5 EXUSUKx U.S. / U.K. Foreign Exchange Rate
105 5 EXCAUSx Canada / U.S. Foreign Exchange Rate
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Table 22: Group 7: Prices

id tcode fred description

106 6 WPSFD49207 PPI: Finished Goods
107 6 WPSFD49502 PPI: Finished Consumer Goods
108 6 WPSID61 PPI: Intermediate Materials
109 6 WPSID62 PPI: Crude Materials
110 6* OILPRICEx Crude Oil, spliced WTI and Cushing
111 6 PPICMM PPI: Metals and metal products
113 6 CPIAUCSL CPI : All Items
114 6 CPIAPPSL CPI : Apparel
115 6 CPITRNSL CPI : Transportation
116 6 CPIMEDSL CPI : Medical Care
117 6 CUSR0000SAC CPI : Commodities
118 6 CUSR0000SAD CPI : Durables
119 6 CUSR0000SAS CPI : Services
120 6 CPIULFSL CPI : All Items Less Food
121 6 CUSR0000SA0L2 CPI : All items less shelter
122 6 CUSR0000SA0L5 CPI : All items less medical care
123 6 PCEPI Personal Cons. Expend.: Chain Index
124 6 DDURRG3M086SBEA Personal Cons. Exp: Durable goods
125 6 DNDGRG3M086SBEA Personal Cons. Exp: Nondurable goods
126 6 DSERRG3M086SBEA Personal Cons. Exp: Services

Table 23: Group 8: Stock market

id tcode fred description

80* 5 S&P 500 S&P’s Common Stock Price Index: Composite
82* 2 S&P div yield S&P’s Composite Common Stock: Dividend Yield
83* 5 S&P PE ratio S&P’s Composite Common Stock: Price-Earnings Ratio

135* 1 VIXCLSx VIX
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