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Abstract

In this report, We examine regime-based dynamic asset allocations, compare our method
with traditional static 60/40 portfolio in different market environments. We construct a
Hidden Markov Model (HMM) using equity returns and yield-curve features to extract four
latent market regimes, each displaying distinct and economically interpretable behavior.
These states range from risk-on expansions and duration-led flight-to-quality periods to
stressed slow-growth environments and acute crisis episodes. Asset-level performance within
each regime is analyzed across U.S. equities, Treasuries, investment-grade credit, and high-
yield bonds.

We then use identified regimes to guide dynamic portfolio construction under several al-
location rules: equal weight, maximum return, maximum Sharpe ratio, minimum variance.
For each specification, portfolio weights are conditioned on the prevailing latent state, pro-
ducing a set of regime-aware strategies. We evaluate their performance relative to the static
60/40 benchmark, focusing on annualized returns, volatility, draw-downs, and risk-adjusted
metrics.

The findings illustrate how incorporating probabilistic regime information can reshape
portfolio behavior and highlight both the advantages and practical limitations of using state-
dependent allocation in modern multi-asset investing.
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1 Introduction

The goal of this paper is to evaluate whether a regime-based dynamic asset allocation strategy
can outperform the traditional 60/40 stock—bond portfolio in an environment of low real yields
and unstable stock-bond correlations. The 60/40 mix remains a widely used policy bench-
mark, yet it implicitly assumes a single stable return distribution and a fixed risk relationship
between equities and bonds. Recent research on time variation in returns, volatility, and cross-
asset correlations shows that these assumptions are fragile. Financial markets cycle through
crash, slow-growth, and recovery states with distinct risk—return trade-offs, and the stock—bond
correlation frequently changes sign across these environments ([Ang and Bekaert, 2002];
[Guidolin and Timmermann, 2007]). When regimes shift, a static 60/40 allocation can be poorly
positioned, increasing drawdowns precisely when downside protection is most needed. This
motivates a dynamic approach that adapts to changing market states rather than assuming a
constant underlying structure.

1.1 Literature Background

A substantial literature builds portfolio strategies around regime-switching models. Studies us-
ing multivariate Markov-switching and hidden Markov models (HMM) find that a small number
of latent regimes explains much of the joint behavior of stock and bond returns, and that portfo-
lios which adjust risk exposure across these regimes can improve Sharpe ratios and reduce down-
side risk relative to static benchmarks ([Nystrup et al., 2018]; [Guidolin and Timmermann, 2007];
[Abrahamsen and Nakovski, 2021]). More recent contributions integrate regime forecasts into
standard optimization frameworks—such as minimum-variance or mean—variance portfolios—and
often use liquid exchange-traded funds to ensure that the strategies are implementable in prac-
tice (|[Uysal and Mulvey, 2021]; [Bae et al., 2014]). Practitioner-oriented work, including Ilma-
nen’s Expected Returns, emphasizes that simple macro variables such as the slope of the yield
curve and broad equity performance carry much of the information investors use when identi-
fying risk-on or risk-off conditions. Our method sits at the intersection of these approaches: it
applies regime-switching methods, keeps the signal set intentionally simple, and tests whether
a transparent allocation rule can generate superior risk-adjusted performance relative to the
static 60/40 benchmark.

1.2 Data and Model

We construct a four-state Gaussian hidden Markov model using two intuitive features: monthly
log returns on the S&P 500 and monthly changes in the Treasury term spread, taken
from the McCracken FRED-MD dataset. The model is estimated on post-1990 data and
its inferred regimes are mapped onto a four-asset universe representative of standard policy
portfolios: U.S. equities (S&P 500 total return), intermediate Treasuries (IEF), investment-
grade credit (LQD), and high-yield credit (HYG). Within each regime, asset-specific means
and covariances are estimated and used to define six allocation rules that combine classical
classical Markowitz method [Markowitz, 1952] with simple heuristics: equal weight, minimum
variance, maximum Sharpe ratio, risk parity, a maximum-return corner solution.

1.3 Empirical Design and contribution

The regime-conditioned portfolios are applied in a regime-based monthly backtest from 2007
onward, allowing the strategies to shift risk across equities and bonds as market states evolve.
Their performance is benchmarked against a static 60/40 S&P—Treasury portfolio using an-
nualized return, volatility, Sharpe ratio, and drawdown metrics, with particular attention to
behavior in stressed regimes.



Our framework enables a direct test of the hypothesis: that a simple, data-driven regime sig-
nal derived from basic market and yield-curve information can support an effective dynamic
allocation strategy, improving risk-adjusted performance and downside resilience relative to the
traditional 60/40 policy mix.

2 Regime Detection

2.1 Method
2.1.1 Feature construction and preprocessing

To detect market regimes we work with monthly data from the McCracken FRED database.
From this file we extract the level of the S&P 500 index, the ten—year Treasury yield GS10 and
the three-month Treasury bill yield TB3MS. We keep observations from January 1990 onward
and convert all numeric fields to floating point values.

The regime signal uses two features. First, we compute the S&P 500 log return

rSPX — Jog(SPX;) — log(SPX;_1),

which captures monthly equity performance and acts as a direct risk-on or risk-off indicator.
Second, we form a term spread as the difference between the long and short Treasury yields,

TS; = GS10; — TB3MS;,
and then use the monthly change in this spread,
ATS; = TS; — TS¢—1,

as our second feature. Changes in the term spread summarize shifts in the slope of the yield
curve, which are linked to expectations about growth, inflation, and policy moves. We collect
these two series in a feature vector X; = (rp*X, ATS;) and drop months with missing values.
Before fitting the regime model we standardize both features using StandardScaler, so each
has mean zero and unit variance. This keeps the hidden Markov model from being driven by
differences in scale rather than by genuine co-movements.

2.1.2 Gaussian hidden Markov model

We model the standardized feature sequence {X;}]_; with a four-state Gaussian hidden Markov
model (HMM) implemented in hmmlearn.GaussianHMM. The model assumes an unobserved
discrete state S; € {0,1,2,3} that follows a time-homogeneous Markov chain with transition
matrix P = (p;;), and that the observed feature vector X; is drawn from a state-specific normal
distribution,

Xt’St:kNN(,U,k,Ek), k:0,1,2,3.

We set n_components = 4, use a full covariance matrix for each state, and allow up to 500
EM iterations with a fixed random seed. Given the standardized input matrix X the model
estimates the state means ju,, covariances ¥j, and the transition probabilities p;; by maximum
likelihood.

After fitting the HMM we recover the most likely state sequence S, using the Viterbi algorithm
(hmm.predict(X) in the code) and store it as features[’state’]. Figure below show the
resulting regimes as colored background bands behind the normalized index levels of the S&P 500
and the three bond exchange traded funds (IEF, LQD, HYG). Each contiguous band corresponds
to a spell during which the inferred state stays constant. Visually, the bands line up with familiar
episodes such as the dot—com boom, the global financial crisis, the post—crisis expansion, the



Covid crash, and the recent inflationary cycle, which supports the economic meaning of the
detected regimes.
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Figure 1: S&P 500 index with four—state Gaussian HMM regimes.
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Figure 2: IEF index level with the same four regimes as in Figure



LQD with 4-state Gaussian HMM Regimes
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Figure 3: LQD index level with the same four regimes as in Figure
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Figure 4: HYG index level with the same four regimes as in Figure

2.2 Regime States Interpretation

To link the latent states to economic conditions we examine how asset returns behave within
each state. We first merge the monthly S&P 500 log return and the ETF returns for IEF, LQD
and HYG into a panel, align this panel with the inferred state series, and restrict the sample to
the period with complete ETF data, starting in June 2007. For each state k£ we compute the
mean and standard deviation of monthly returns for each asset, then annualize these moments
and form Sharpe ratios. Table[I]reports the resulting annualized returns, volatilities and Sharpe
ratios, together with the number of months assigned to each state.



Table 1: Annualized performance by HMM state.

Annualized return Annualized volatility
State SPX IEF LQD HYG SPX IEF LQD HYG
0 -0.4553 0.0047 -0.1600 -0.3135 0.3088 0.1241 0.1645 0.2096

0.0192 0.1513 0.0968 0.0028 0.1438 0.0598 0.0772 0.0966
0.1945 0.0017 0.0429 0.0930 0.0710 0.0575 0.0616 0.0570
-0.0022 0.0463 0.0738 0.1399 0.1649 0.0741 0.0877 0.1177

W N =

Table 2: Sharpe ratios and number of months by HMM state.

Sharpe ratio Months
State SPX IEF LQD HYG
0 -1.4745 0.0380 -0.9724 -1.4958 13
1 0.1335 2.5309 1.2526  0.0287 39
2 2.7392 0.0291 0.6965 1.6308 132
3 -0.0133 0.6255  0.8418  1.1889 33

State 0 represents an acute crisis regime. Equity returns are deeply negative—annualizing to
nearly minus 45 percent in our sample—and both investment-grade and high-yield credit also
post large losses. Treasuries offer only limited offset. This state appears rarely, but it aligns with
major stress events when risk assets sell off simultaneously and liquidity evaporates. Examples
include the worst months of the 2008 financial crisis and the sudden global market breakdown in
March 2020, when forced deleveraging and systemic uncertainty produced indiscriminate selling
across equities and credit.

State 1 corresponds to a flight-to-quality or duration-led regime. Equities are roughly flat with a
weak Sharpe ratio, yet Treasuries earn about 15 percent annually with extremely low volatility,
and investment-grade credit also performs well. High yield, by contrast, barely breaks even.
These characteristics point to episodes in which yields fall, duration becomes the main source of
return, and investors prefer safer assets without fully abandoning risk. A prominent historical
example is 2019, when slowing global manufacturing, a flattening U.S. yield curve, and recurring
U.S.—China trade tensions pushed investors into Treasuries. Policy uncertainty and softening
growth expectations kept equity markets cautious while duration rallied powerfully.

State 2 reflects a classic risk-on expansion. Equity markets deliver strong, steady gains—the
S&P 500 returns nearly 19 percent annually with low volatility and a Sharpe ratio above
two—and both investment-grade and high-yield credit perform well. Treasuries earn almost
nothing, a pattern consistent with stable or rising yields during periods of firm growth and
healthy risk appetite. This type of environment resembles mid-cycle expansions such as 2004—2006
or 20162017, when economic conditions were broadly supportive and volatility compressed
across asset classes.

State 3 reflects a stressed but not catastrophic environment. Equities are near flat with elevated
volatility, while all segments of the bond market earn positive returns and high yield performs
the best. The mix suggests slow growth, falling or stable yields, and moderately improving
credit conditions. Markets often display this pattern during early-recovery or late-cycle phases,
when risk appetite begins to return but equity performance remains uneven. Examples include
the post-Eurozone-crisis years of 2012-2013 or the pre-COVID period of 2019 prior to the
sharp deterioration, when credit spreads tightened even as equity markets remained sensitive
to shifting expectations.



In combination, the feature design and the estimated hidden-state structure allow the model
to translate information from stock returns and the yield curve into four economically in-
tuitive regimes. These regimes provide a state variable that naturally supports a dynamic
asset-allocation framework, where portfolio weights can adjust in response to changes in the
underlying market environment rather than relying on a single static mix.

3 Portfolio Construction Methods

3.1 Investment universe and data frequency

The investment universe consists of four liquid U.S. assets: the S&P 500 total return index,
intermediate Treasuries (IEF), investment-grade credit (LQD), and high-yield credit (HYG). All
series are converted to end-of-month total returns, and portfolios are rebalanced monthly
(regime-based) in sync with the regime detection process. Optimization rules are applied
with a long-short strategy, so weights may take negative values when the implied risk-return
trade-off favors short exposure to an asset. Portfolio weights are normalized to sum to one at
each rebalance date, ensuring full investment while allowing the strategies to express both long
and short views across the four asset classes.

3.2 Static 60/40 benchmark

We construct a classic 60/40 stock—bond portfolio to provide a simple and widely understood
reference point. The benchmark holds a fixed proportion of capital in the equity index and the
Treasury fund IEF. At each rebalancing date the portfolio is realigned to maintain sixty percent
in equities and forty percent in Treasuries.

Between rebalancing dates the weights are allowed to drift with relative price movements, which
reflects how a buy—and—hold investor naturally becomes more equity heavy in a persistent rally
and more bond heavy after an equity drawdown. We consider both monthly and quarterly
rebalancing schedules. This benchmark does not use any regime information. It represents the
kind of policy portfolio that many investors still follow in practice.

3.3 Regime-based dynamic portfolios

The dynamic strategies use the hidden Markov model state as a compact summary of current
market conditions.

Let the state at the beginning of month ¢ be denoted by Sy, and let R, be the vector of asset
returns over that month. Whenever the inferred state changes, the portfolio is allowed to
rebalance and update its weights.

To avoid look—ahead bias the strategy relies only on returns that precede the decision date
and that belong to the same state as the current one.

For each state we collect at most the most recent thirty—six months of historical returns that
have been assigned to that state. If there are fewer than twelve such observations, the strategy
keeps its previous weights, which prevents unstable estimates in very short samples. Within
each state we estimate the average return vector and the covariance matrix of returns. These
estimates are then used to define six distinct portfolio rules:

1. Equal-weight portfolio. Capital is split evenly across the four assets. With N assets
the weight on each asset i is

1
wiW = — i=1,...,N.

This rule ignores all parameter estimates and treats every asset as equally attractive,
which makes it a simple diversification benchmark that is robust to estimation error.



2. Minimum—variance portfolio. Here the goal is to minimize predicted portfolio variance
while the weights still sum to one. Let X be the regime specific covariance matrix and 1
a vector of ones. The minimum—variance weights solve

min w' Sw  subject to 17w =1,
w

which in closed form gives
¥11
MV _
1Tyl
The resulting portfolio leans toward assets that are less volatile and weakly correlated
with the rest of the universe.

3. Maximum—Sharpe portfolio. Assuming a zero cash rate, we use the regime specific
mean vector p and covariance matrix Y to construct the tangency portfolio that maximizes
the ratio of expected return to volatility. The weights solve

w g bject to 17w =1
max ———— subject to w =1,
v VwTYw
which implies that the portfolio direction is proportional to X~'x. After normalizing we
obtain .
Ms _ XM
1781y

Assets with higher estimated returns and favorable covariance with the rest of the portfolio
receive more weight.

4. Risk—parity portfolio. Instead of balancing expected returns, this strategy balances
contributions to total portfolio volatility. Let the portfolio volatility be o,(w) = Vw ' Zw.
The risk contribution of asset 7 is

W; (Ew)i
op(w)

Risk parity chooses weights such that all contributions are (approximately) equal,

RCz (w) =

RC(w) ~ RCy(w) ~ - - - ~ ROx(w) = "p]ifw)

In practice this leads to higher capital allocations to low—volatility assets and lower allo-
cations to high—volatility assets while still keeping all four exposures in play.

5. Maximum-return portfolio. This rule takes an intentionally extreme view. Within
the current regime it identifies the asset with the highest estimated mean return

J = argmax [i;,
(]

and allocates the entire portfolio to that asset,

MR MR L
w; =1, w; =0 for i # j.

The strategy therefore acts as a regime aware “winner takes all” bet and ignores diversi-
fication on purpose.

All five strategies are implemented in a fully dynamic way. At each month the current state
is observed, the relevant regime—specific weights are applied, and the realized portfolio return
is recorded. Between regime changes the portfolios evolve passively with market movements.
This design keeps trading focused on times when the hidden Markov model signals that the
market environment has shifted in a meaningful way, which is exactly when a regime-based
investor would want to reconsider the allocation. The next section evaluates the behavior of
these strategies relative to the static 60/40 benchmark.



4 Performance and Analysis of Regime—based Portfolios

Table 3: Annualized performance metrics for benchmark and regime—based portfolios.

Strategy Ann. return  Ann. vol. Sharpe Max drawdown Win rate
60/40 SPX-IEF (M) 0.0610 0.0880 0.6934 -0.3125 0.6728
60/40 SPX-IEF (Q) 0.0625 0.0880  0.7100 -0.3006 0.6728
SPX Only 0.0793 0.1376  0.5762 -0.5325 0.6636
IEF Only 0.0342 0.0674  0.5077 -0.2319 0.5392
LQD Only 0.0436 0.0792  0.5504 -0.2331 0.5806
HYG Only 0.0539 0.0958  0.5623 -0.3177 0.6498
Regime Equal Weight 0.0526 0.0680 0.7733 -0.2086 0.6452
Regime Min Variance 0.0612 0.0598  1.0233 -0.1675 0.6912
Regime Max Sharpe 0.1095 0.0934 1.1727 -0.2055 0.6498
Regime Risk Parity 0.0541 0.0640 0.8452 -0.1815 0.6498
Regime Max Return 0.0953 0.0956  0.9974 -0.2118 0.6544

Benchmark vs Regime-based Strategies (No Look-ahead)
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Figure 5: Cumulative wealth for the sixty—forty benchmark and regime-based strategies.

4.1 Performance Analysis

Table |3| reports annualized return, volatility, Sharpe ratio and maximum drawdown for the
benchmark portfolios, for the individual assets and for all regime—based strategies. The static
sixty—forty portfolio delivers an annualized return of about six percent with volatility close to
nine percent and a Sharpe ratio around 0.69. Its maximum drawdown is roughly thirty one
percent, which reflects the large equity losses during the global financial crisis and the Covid
shock. A pure equity allocation earns a higher average return of almost eight percent but with
much higher volatility and a drawdown above fifty percent. In contrast, the Treasury and credit
funds have lower returns yet also lower risk, with maximum drawdowns in the low to mid twenty
percent range. These single—asset numbers set the stage for the regime—based portfolios, which
try to mix the four building blocks in a more flexible way.



The equal-weight regime portfolio has a slightly lower return than the sixty—forty benchmark
but also a noticeably lower volatility. Its Sharpe ratio rises to about 0.77 and its maximum
drawdown shrinks to around twenty one percent. So simply diversifying across the four assets in
a regime—aware way improves risk adjusted performance even without any explicit optimization.
The minimum-—variance regime portfolio delivers roughly the same return as the sixty—forty mix
yet cuts volatility from 8.8 percent to about 6.1 percent. Its Sharpe ratio moves above one and
its maximum drawdown improves to about seventeen percent. This strategy shows that using
regime specific covariance information to stabilize risk pays off in a very direct way. The risk
parity portfolio sit in between. They earn returns just above five percent with volatility a
bit above six percent and Sharpe ratios near 0.85. Drawdowns are also smaller than for the
benchmark. In other words, these strategies trade some expected return for a smoother ride
and better downside protection.

The max return strategy is more aggressive. It earns around 9.5 percent per year with volatility
close to that of the benchmark and a Sharpe ratio just below one. Its worst drawdown is still only
about twenty one percent. This happens because the strategy tends to concentrate in the asset
with the best regime specific mean yet still moves out of harm’s way when the regime changes.
Finally, the regime based max Sharpe strategy produces the highest raw return at roughly 11.4
percent per year. It does so with much higher volatility near 17 percent and a drawdown of
about 43 percent, which brings its Sharpe ratio back in line with the sixty—forty benchmark.
Figure [5| visualizes these differences by plotting the cumulative wealth of all regime—based
strategies alongside the dashed sixty—forty benchmark. The minimum-—variance, risk—parity
lines track just above the benchmark with visibly smoother paths, whereas the max Sharpe
and max return lines peel away toward the top of the chart but also show sharper dips around
major stress episodes. The figure makes the trade off clear: some regime-based strategies use
the state information mostly to smooth risk (MinVar, RiskParity), others use it to chase extra
return (Max Return and Max Sharpe), and investors can choose where on that spectrum they
prefer to sit.

Table 4: Regime specific optimal weights by strategy (ex—post, for interpretation).

Regime 0
Strategy S&P 500 Treasuries IG credit HY credit
Equal weight 0.250 0.250 0.250 0.250
Minimum variance 0.115 1.016 -0.433 0.303
Maximum Sharpe 0.400 0.252 -0.181 0.530
Risk parity 0.146 0.364 0.274 0.215
Maximum return 0.000 1.000 0.000 0.000
Regime 1
Equal weight 0.250 0.250 0.250 0.250
Minimum variance 0.077 0.711 -0.159 0.371
Maximum Sharpe 0.032 0.729 0.293 -0.054
Risk parity 0.148 0.356 0.276 0.220
Maximum return 0.000 1.000 0.000 0.000
Regime 2
Equal weight 0.250 0.250 0.250 0.250
Minimum variance 0.232 0.658 -0.454 0.564
Maximum Sharpe 0.641 -0.019 -0.070 0.448
Risk parity 0.216 0.267 0.249 0.269
Maximum return 1.000 0.000 0.000 0.000
Regime 3
Equal weight 0.250 0.250 0.250 0.250
Minimum variance 0.048 0.712 -0.108 0.347
Maximum Sharpe -0.123 0.630 -0.184 0.677
Risk parity 0.154 0.342 0.289 0.215
Maximum return 0.000 0.000 0.000 1.000
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Max Sharpe Portfolio Weights by Regime (ex-post)
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Figure 6: Maximum Sharpe portfolio weights by regime, ex—post.
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Figure 7: Heat map of maximum Sharpe weights by regime, ex—post.
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Figure 8: Equal-weight portfolio weights through time.
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Min Variance Portfolio Weights
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Figure 10: Maximum Sharpe portfolio weights through time.
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Figure 12: Maximum return portfolio weights through time.
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4.2 Regime specific behavior and optimal weights

To understand how the dynamic allocation rules respond to different market conditions, we
study the ex-post optimal weights obtained by estimating each portfolio rule separately within
each HMM regime using the full sample. These allocations are used only for interpretation.
The live back-tests rely on rolling, regime-filtered windows and therefore produce more muted
weight changes than the ex-post numbers reported here.

Table [ summarizes the optimal weights for all strategies across the four regimes. Figures[6]and
[7 focus on the maximum-Sharpe portfolio and highlight how its composition shifts across states.
In the crisis regime (State 0), the maximum-Sharpe solution tilts to Treasuries and high yield
while shorting investment-grade credit. In the flight-to-quality regime (State 1), it concentrates
almost entirely in Treasuries. During the expansionary regime (State 2), it loads heavily into
equities and high yield, which deliver the highest Sharpe ratios in that state. In the fragile
slowdown regime (State 3), the portfolio again over-weights Treasuries and high yield and takes
a short position in investment-grade credit.

The time-series of portfolio weights in Figures [8-77 show how these regime patterns unfold
in real time. The equal-weight portfolio remains fixed at one-quarter per asset, providing
a stable reference point. The minimum-variance portfolio shifts sharply toward Treasuries
during stress periods and occasionally shortens credit, consistent with its low-volatility objective.
The maximum-Sharpe portfolio displays the most pronounced variation, with leveraged and
sometimes negative exposures that chase the highest expected risk-adjusted return in each
regime. Risk-parity portfolio evolve more smoothly: both keep all assets in the portfolio and
adjust weights gradually as volatility estimates and state classifications change. The maximum-
return rule switches discretely between single-asset allocations and therefore produces a sequence
of on/off weight patterns.

These regime-specific weight behaviors help explain the performance results. When the model
identifies a risk-on regime, dynamic strategies increase exposure to equities and high yield,
improving upside capture. When the model signals crisis or flight-to-quality conditions, allo-
cations shift toward Treasuries, reducing drawdowns and improving Sharpe ratios for the more
risk-aware strategies.

5 Conclusion

We investigated whether a regime—based dynamic asset allocation framework improve on the
familiar sixty—forty stock—bond mix in a realistic, ETF based setting. To answer it we built
a four—state Gaussian hidden Markov model using only two features that investors watch in
practice. Monthly S&P 500 returns stand in for broad equity risk, while changes in the Trea-
sury term spread summarize shifts in the yield curve and in macro expectations. The model
uncovered four economically intuitive regimes that line up with crisis periods, flight—to—quality
episodes, growth phases and more fragile slowdowns. These regimes then became the state
variable that drives a family of allocation rules.

On top of this regime signal we layered five portfolio construction methods, ranging from equal
weight to minimum variance, maximum Sharpe, risk parity, and maximum return. All strate-
gies invest in the same four liquid U.S. assets and trade at the same monthly frequency. The
comparison with the static sixty—forty benchmark shows a clear pattern. Regime—based strate-
gies that use the signal mainly to stabilize risk perform especially well. Minimum variance and
risk parity deliver Sharpe ratios above the benchmark and smaller maximum drawdowns, with
returns that are similar or only slightly lower. They keep investors in the game while smoothing
the ride. More return—seeking rules tell a different but consistent story. The maximum return
and maximum Sharpe strategies earn much higher average returns, yet they do so with higher
volatility and deeper drawdowns. Regime information helps with time when to take risk, though
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it does not eliminate the trade off between growth and pain.

Even a very simple regime model can add value when it is tied to transparent portfolio rules.
We did not rely on a long list of predictors, complex machine learning or exotic asset classes. We
worked with standard ETFs, monthly data and a basic Gaussian HMM. Yet the combination
of states and rules already produced portfolios that look meaningfully different from a static
policy mix and that often behave better in terms of risk—adjusted performance and downside
protection.

There are certain limitations we need to be aware of. All results are based on U.S. data and
on one particular choice of features, so they may not carry over to other markets or other
state variables. Transaction costs, financing costs and taxes are ignored. The HMM itself is
mis-specified in many ways. Regime means and covariances are estimated with noise, the true
return distribution is not Gaussian, and state labels are inferred rather than observed. These
caveats matter, yet they do not wipe out the central insight. Even noisy information about
where we are in the cycle can support more nuanced allocation decisions.

Future work can push the framework in several directions. One path is to broaden the universe
to include global equities, inflation linked bonds, commodities and currencies, so that the regime
signal allocates across a richer opportunity set. Another path is to refine the state model by
allowing non—Gaussian returns, time varying transition probabilities or alternative machine
learning approaches. A third path is to combine regime signals with robust optimization and
with explicit trading cost control. All of these extensions share one theme. They try to keep the
link between model and portfolio simple enough to understand, yet powerful enough to matter.
In short, the evidence in this paper suggests that regime—based dynamic allocation is a practical
step beyond static policy portfolios.

For long—horizon investors who care about both performance and resilience, that balance is
exactly what matters.
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